34 Bài tập bồi dưỡng môn Toán Lớp 4

doc18 trang | Chia sẻ: thuongnguyen92 | Lượt xem: 396 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu 34 Bài tập bồi dưỡng môn Toán Lớp 4, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Bài 86: Có hai cái đồng hồ cát 4 phút và 7 phút. Có thể dùng hai cái đồng hồ này để đo thời gian 9 phút được không? 
Bài giải: 
Có nhiều cách để đo được 9 phút: Bạn có thể cho cả 2 cái đồng hồ cát cùng chảy một lúc và chảy hết cát 3 lần. Khi đồng hồ 4 phút chảy hết cát 3 lần (4 x 3 = 12(phút)) thì bạn bắt đầu tính thời gian, từ lúc đó đến khi đồng hồ 7 phút chảy hết cát 3 lần thì vừa đúng được 9 phút (7 x 3 - 12 = 9(phút)); hoặc cho cả hai đồng hồ cùng chảy một lúc, đồng hồ 7 phút chảy hết cát một lần (7 phút), đồng hồ 4 phút chảy hết cát 4 lần (16 phút). Khi đồng hồ 7 phút chảy hết cát ta bắt đầu tính thời gian, từ lúc đó đến lúc đồng hồ 4 phút chảy hết cát 4 lần là vừa đúng 9 phút (16 - 7 = 9 (phút)); ... 
Bài 87: 
Vui xuân mới, các bạn cùng làm phép toán sau, nhớ rằng các chữ cái khác nhau cần thay bằng các chữ số khác nhau, các chữ cái giống nhau thay bằng các chữ số giống nhau. 
NHAM + NGO = 2002
Bài giải: 
- Vì A≠G mà chữ số hàng chục của tổng là 0 nên phép cộng có nhớ 1 sang hàng trăm nên ở hàng trăm: H + N + 1 (nhớ) = 10; nhớ 1 sang hàng nghìn. Do đó H + N = 10 - 1 = 9. 
- Phép cộng ở hàng nghìn: N + 1 (nhớ) = 2 nên N = 2 - 1 = 1. 
Thay N = 1 ta có: H + 1 = 9 nên H = 9 - 1 = 8 
- Phép cộng ở hàng đơn vị: Có 2 trường hợp xảy ra: 
* Trường hợp 1: Phép cộng ở hàng đơn vị không nhớ sang hàng chục. 
Khi đó: M + O = 0 và A + G = 10. 
Ta có bảng: (Lưu ý 4 chữ M, O, A, G phải khác nhau và khác 1; 8) 
* Trường hợp 2: Phép cộng ở hàng đơn vị có nhớ 1 sang hàng chục. 
Khi đó: M + O = 12 và A + G = 9. Ta có bảng: 
Vậy bài toán có 24 đáp số như trên. 
Bài 88: Hãy xếp 8 quân đôminô vào một hình vuông 4x4 sao cho tổng số chấm trên các hàng ngang, dọc, chéo của hình vuông đều bằng 11. 
Lời giải: Có ba cách giải cơ bản sau: 
Từ ba cách giải cơ bản này có thể tạo nên nhiều phương án khác, chẳng hạn: 
Bài 89: Sử dụng các con số trong mỗi biển số xe ô tô 39A 0452, 38B 0088, 52N 8233 cùng các dấu +, -, x, : và dấu ngoặc ( ), [ ] để làm thành một phép tính đúng. 
Lời giải: 
* Biển số 39A 0452. Xin nêu ra một số cách: 
(4 x 2 - 5 + 0) x 3 = 9
5 x 2 - 4 + 3 + 0 = 9 
45 : 9 - 3 - 2 = 0 
(9 + 2 - 3) x 5 = 40 
(4 + 5) : 9 + 2 + 0 = 3 
9 : 3 - ( 5 - 4 + 2) = 0 
3 - 9 : (4 + 5) - 0 = 2 
9 : (4 + 5) + 2 + 0 = 3 
(9 + 5) : 2 - 4 + 0 = 3 
9 + 3 : (5 - 2) + 0 = 4 
5 + 2 - 9 : 3 - 0 = 4 
(9 : 3 + 0) + 4 - 2 = 5 
(9 + 3) : 4 + 0 + 2 = 5 . . . . 
* Biển số 38B 0088. Có nhiều lời giải dựa vào tính chất “nhân một số với số 0” 
38 x 88 x 0 = 0 
hoặc tính chất “chia số 0 cho một số khác 0” 
0 : (38 + 88) = 0 
Một vài cách khác: 
(9 - 8) + 0 - 8 : 8 = 0 
8 : 8 + 8 + 0 + 0 = 9 . . . . 
* Biển số 52N 8233. Xin nêu ra một số cách: 
5 x 2 - 8 + 3 - 3 = 2 
8 : (5 x 2 - 3 - 3) = 2 
[(23 - 3) : 5] x 2 = 8 
(5 + 2 + 2) - (3 : 3) = 8 
(8 : 2 - 3) x (3 + 2) = 5 
[(8 + 2) x 3 : 3] : 2 = 5 
(5 x 2 + 3 + 3) : 2 = 8 
3 x 3 - 5 + 2 + 2 = 8 . . . . 
Bài 90: Một chiếc đồng hồ đang hoạt động bình thường, hiện tại kim giờ và kim phút đang không trùng nhau. Hỏi sau đúng 24 giờ (tức 1 ngày đêm), hai kim đó trùng nhau bao nhiêu lần? Hãy lập luận để làm đúng sáng tỏ kết qu đó.
Lời giải: Với một chiếc đồng hồ đang hoạt động bình thường, cứ mỗi giờ trôi qua thì kim phút quay được một vòng, còn kim giờ quay được 1/12 vòng. 
Hiệu vận tốc của kim phút và kim giờ là: 
1 - 1/12 = 11/12 (vòng/giờ) 
Thời gian để hai kim trùng nhau một lần là: 
1 : 11/12 = 12/11 (giờ) 
Vậy sau 24 giờ hai kim sẽ trùng nhau số lần là : 
24 : 12/11 = 22 (lần). 
Bài 91: Có ba người dùng chung một két tiền. Hỏi phải làm cho cái két ít nhất bao nhiêu ổ khoá và bao nhiêu chìa để két chỉ mở được nếu có mặt ít nhất hai người? 
Lời giải: 
Vì két chỉ mở được nếu có mặt ít nhất hai người, nên số ổ khoá phải lớn hơn hoặc bằng 2. 
a) Làm 2 ổ khoá. 
+ Nếu làm 3 chìa thì sẽ có hai người có cùng một loại chìa; hai người này không mở được két. 
+ Nếu làm nhiều hơn 3 chìa thì ít nhất có một người cầm 2 chìa khác loại; chỉ cần một người này đã mở được két. 
Vậy không thể làm 2 ổ khoá. 
b) Làm 3 ổ khoá 
+ Nếu làm 3 chìa thì cần phải có đủ ba người mới mở được két. 
+ Nếu làm 4 chìa hoặc 5 chìa thì ít nhất có hai người không mở được két. 
+ Nếu làm 6 chìa (mỗi khoá 2 chìa) thì mỗi người cầm hai chìa khác nhau thì chỉ cần hai người bất kỳ là mở được két. 
Vậy ít nhất phải làm 3 ổ khoá và mỗi ổ khoá làm 2 chìa. 
Bài 92 : Có 4 tấm gỗ dài và 4 tấm gỗ hình cung tròn. Nếu sắp xếp như hình bên thì được 4 chuồng nhốt 4 chú thỏ, nhưng 1 chú lại chưa có chuồng. Bạn hãy xếp lại các tấm gỗ để có đủ 5 chuồng cho mỗi chú thỏ có một chuồng riêng.
Bài giải : Bài toán có nhiều cách xếp. Xin nêu ra ba cách xếp như sau: 
Bài 93: Một phân xưởng có 25 người. Hỏi rằng trong phân xưởng đó có thể có 20 người ít hơn 30 tuổi và 15 người nhiều hơn 20 tuổi được không?
Bài giải: 
Vì chỉ có 25 người, mà trong đó có 20 ít hơn 30 tuổi và 15 người nhiều hơn 25 tuổi, nên số người được điểm 2 lần là: 
(20 + 15) - 25 = 10 (người) 
Đây chính là số người có độ tuổi ít hơn 30 tuổi và nhiều hơn 20 tuổi (từ 21 tuổi đến 29 tuổi). 
Số người từ 30 tuổi trở lên là: 
25 - 20 = 5 (người) 
Số người từ 20 tuổi trở xuống là: 
25 - 15 = 10 (người) 
Số người ít hơn 30 tuổi là: 
10 + 10 = 20 (người) 
Số người nhiều hơn 20 tuổi là: 
10 + 5 = 15 (người) 
Vậy có thể có 20 người dưới 30 tuổi và 15 người trên 20 tuổi; trong đó từ 21 đến 29 tuổi ít nhất có hai người cùng độ tuổi. 
Bài 94: Tìm 4 số tự nhiên liên tiếp có tích là 3024 
Bài giải: Giả sử cả 4 số đều là 10 thì tích là 10 x 10 x 10 x 10 = 10000 mà 10000 > 3024 nên cả 4 số tự nhiên liên tiếp đó phải bé hơn 10. 
Vì 3024 có tận cùng là 4 nên cả 4 số phải tìm không thể có tận cùng là 5. Do đó cả 4 số phải hoặc cùng bé hơn 5, hoặc cùng lớn hơn 5. 
Nếu 4 số phải tìm là 1; 2; 3; 4 thì: 
1 x 2 x 3 x 4 = 24 < 3024 (loại) 
Nếu 4 số phải tìm là 6; 7; 8; 9 thì: 
6 x 7 x 8 x 9 = 3024 (đúng) 
Vậy 4 số phải tìm là 6; 7; 8; 9. 
Bài 95: Có 3 loại que với số lượng và các độ dài như sau: 
- 16 que có độ dài 1 cm 
- 20 que có độ dài 2 cm 
- 25 que có độ dài 3 cm 
Hỏi có thể xếp tất cả các que đó thành một hình chữ nhật được không?
Bài giải: 
Một hình chữ nhật có chiều dài (a) và chiều rộng (b) đều là số tự nhiên (cùng một đơn vị đo) thì chu vi (P) của hình đó phải là số chẵn: 
P = (a + b) x 2 
Tổng độ dài của tất cả các que là: 
1 x 16 + 2 x 20 + 3 x 25 = 131 (cm) 
Vì 131 là số lẻ nên không thể xếp tất cả các que đó thành một hình chữ nhật được. 
Bài 96: Hãy phát hiện ra mối liên hệ giữa các số rồi sử dụng mối liên hệ đó để điền số hợp lý vào (?) 
Bài giải: 
Để cho gọn, ta ký hiệu các số trên những ô tròn theo bảng sau: 
Lấy A chia cho K: 72 : 9 = 
Lấy G chia cho C: 8 : 1 = 
Lấy B chia cho H: 16 : 2 = 
Lấy E chia cho D: 24 : 3 = đều cho cùng một kết quả ở ô Đ. Vậy (?) là 8. 
Bài 97: Cô giáo yêu cầu: “Các con lấy 6 điểm trên một đường tròn, nối các điểm đó bởi các đoạn thẳng tô bởi mực xanh hoặc mực đỏ”. 
Bạn lớp trưởng tập hợp các hình vẽ lại và xem, bạn thốt lên: “Bạn nào cũng vẽ được 1 tam giác mà 3 cạnh cùng màu mực”! Bạn hãy thử làm lại xem. Ai có thể lập luận để làm rõ tính chất này? 
Bài giải: Có nhiều cách giải, đây là một trong các cách giải bài này: Ta gọi 6 điểm nằm trên đường tròn là A1, A2, A3, A4, A5, A6. Bằng bút xanh và đỏ ta nối A1 với 5 điểm còn lại ta được 5 đoạn thẳng có hai màu xanh hoặc đỏ. 
Theo nguyên lý Điríchlê có ít nhất 3 đoạn thẳng cùng màu. Không làm mất tính tổng quát, ta nối 3 đoạn A1A2, A1A3, A1A4 bằng bút màu đỏ. Ta nối tiếp A2A4 và A2A3. Để tam giác A1A2A3 và tam giác A1A2A4 có 3 cạnh không cùng màu thì A2A4 và A2A3 phải tô màu xanh. Bây giờ ta tiếp tục nối A3A4, ta thấy A3A4 được tô bằng bất kỳ màu xanh hoặc đỏ thì ta cũng được ít nhất một tam giác có 3 cạnh cùng màu (hoặc A1A3A4 có 3 cạnh đỏ hoặc A2A3A4 có 3 cạnh màu xanh). 
Bài 98: Thi bắn súng 
Hôm nay Dũng đi thi bắn súng. Dũng bắn giỏi lắm, Dũng đã bắn hơn 11 viên, viên nào cũng trúng bia và đều trúng các vòng 8;9;10 điểm. Kết thúc cuộc thi, Dũng được 100 điểm. Dũng vui lắm. Còn các bạn có biết Dũng đã bắn bao nhiêu viên và kết quả bắn vào các vòng ra sao không? 
Bài giải: Số viên đạn Dũng đã bắn phải ít hơn 13 viên (vì nếu Dũng bắn 13 viên thì Dũng được số điểm ít nhất là: 8 x 11 + 9 x 1 + 10 x 1 = 107 (điểm) > 100 điểm, điều này vô lý). 
Theo đề bài Dũng đã bắn hơn 11 viên nên số viên đạn Dũng đã bắn là 12 viên. 
Mặt khác 12 viên đều trúng vào các vòng 8, 9, 10 điểm nên ít nhất có 10 viên vào vòng 8 điểm, 1 viên vào vòng 9 điểm, 1 viên vào vòng 10 điểm. 
Do đó số điểm Dũng bắn được ít nhất là: 
8 x 10 + 9 x 1 + 10 x 1 = 99 (điểm) 
Số điểm hụt đi so với thực tế là: 
100 - 99 = 1 (điểm) 
Như vậy sẽ có 1 viên không bắn vào vòng 8 điểm mà bắn vào vòng 9 điểm; hoặc có 1 viên không bắn vào vòng 9 điểm mà bắn vào vòng 10 điểm. 
Nếu có 1 viên Dũng không bắn vào vòng 9 điểm mà bắn vào vòng 10 điểm thì tổng cộng sẽ có 10 viên vào vòng 8 điểm và 2 viên vào vòng 10 điểm (loại vì không có viên nào bắn vào vòng 9 điểm). 
Vậy sẽ có 1 viên không bắn vào vòng 8 điểm mà bắn vào vòng 9 điểm, tức là có 9 viên vào vòng 8 điểm, 2 viên vào vòng 9 điểm và 1 viên vào vòng 10 điểm. 
Bài 99: Ai xem ca nhạc? 
Một gia đình có năm người: bà nội, bố, mẹ và hai bạn Chi, Bảo. Một hôm gia đình được tặng 2 vé mời xem ca nhạc. Năm ý kiến của năm người như sau: 
a) “Bà nội và mẹ đi” 
b) “Bố và mẹ đi” 
c) “Bố và bà nội đi” 
d) “Bà nội và Chi đi” 
e) “Bố và Bảo đi” 
Sau cùng, mọi người theo ý kiến của bà nội và như vậy trong ý kiến của mọi người khác đều có một phần đúng. 
Bà nội đã nói câu nào? 
Bài giải: Một bài toán lôgíc cơ bản và khó, sau đây là lời giải. 
Ta ký hiệu theo thứ tự “đi xem” ca nhạc: n (Bà nội), m (mẹ), b (Bố), C (Chi) và B (Bảo) và năm người trên khi họ “không đi” là n, m, b, C và B. 
Như vậy theo ý kiến của năm người là: 
a) n và m 
b) b và m 
c) b và n 
d) n và C 
e) b và B. 
Có lẽ cần phải nhấn mạnh rằng: Mỗi trong năm ý trên đều có một phần đúng và một phần sai (trừ ý của bà!). 
Câu mà bà nội nói là đúng với cả năm ý trên. 
- Nếu chọn câu a) thì không có e tức b và B. 
- Nếu chọn câu b) thì không có d tức n và C. 
- Nếu chọn câu c) thì các ý kiến khác có một phần đúng. Bà nội đã nói câu c) 
Nếu học sinh thích thú lôgíc Toán thì còn tìm thêm được nhiều cách giải khác.
Bài 100: Chơi bốc diêm 
Trên mặt bàn có 18 que diêm. Hai người tham gia cuộc chơi: Mỗi người lần lượt đến phiên mình lấy ra một số que diêm. Mỗi lần, mỗi người lấy ra không quá 4 que. Người nào lấy được số que cuối cùng thì người đó thắng. Nếu bạn được bốc trước, bạn có chắc chắn thắng được không? 
Bài giải: Giả sử rằng A và B tham gia cuộc chơi mà A lấy diêm trước. Để chắc thắng thì trước lần cuối cùng A phải để lại 5 que diêm, trước đó A phải để lại 10 que diêm và lần bốc đầu tiên A để lại 15 que diêm, khi đó dù B có bốc bao nhiêu que thì vẫn còn lại số que để A chỉ cần bốc một lần là hết.Muốn vậy thì lần trước đó A phải để lại 10 que diêm , khi đó dù B bốc bao nhiêu que vẫn còn lại số que mà A có thể bốc để còn lại 5 que . Tương tự như thế thì lần bốc đầu tiên A phải để lại 15 que diêm . Với " chiến lược" này bao giờ A cũng là người thắng cuộc. 
Bài 101: Tô màu Hình bên gồm 6 đỉnh A, B, C, D, E, F và các cạnh nối một số đỉnh với nhau. Ta tô màu các đỉnh sao cho hai đỉnh được nối bởi một cạnh phải được tô bởi hai màu khác nhau. Hỏi phải cần ít nhất là bao nhiêu màu để làm việc đó? 
Bài giải: 
Tất cả các đỉnh A, B, C, D, E đều nối với đỉnh F nên đỉnh F phải tô màu khác với các đỉnh còn lại. Với 5 đỉnh còn lại thì A và C tô cùng một màu. B và D tô cùng một màu, E tô riêng một màu, như vậy cần ít nhất 3 màu để tô 5 đỉnh sao cho 2 đỉnh được nối bởi một cạnh được tô bởi 2 màu khác nhau. Vậy cần ít nhất 4 màu để tô 6 đỉnh của hình theo yêu cầu của đề bài. 
Bài 102: Điền số trên đường tròn Điền 6 số chẵn từ 2 đến 12 vào các chấm trên 3 vòng tròn sao cho tổng 3 số nằm trên mỗi vòng tròn đều bằng 18. 
Bài giải: Sáu số chẵn đó là: 
2, 4, 6, 8, 10, 12.
Ta có: 
18 = 2 + 4 + 12
18 = 2 + 6 + 10
18 = 4 + 6 + 8
Trên hình vẽ ta thấy cứ hai đường tròn lại có một điểm chung. Như vậy số nào điền vào điểm chung đó sẽ thuộc hai tổng đã cho. Ta thấy số 2, số 4, số 6 đều 
lặp lại hai lần nên ba số đó được điền vào ba điểm chung. Các số đã cho được điền vào hình vẽ như sau: 
Bài 103 : Tìm hai số biết rằng tổng của chúng gấp 5 lần hiệu của chúng và tích của chúng gấp 4008 lần hiệu của chúng. 
Bài giải : Coi hiệu của hai số là 1 phần thì tổng của chúng là 5 phần. Do đó số lớn là (5 + 1) : 2 = 3 (phần). Số bé là : 3 - 1 = 2 (phần). Tích của hai số là : 2 x 3 = 6 (phần), mà tích hai số là 4008 nên giá trị một phần là : 4008 : 6 = 668. Số bé là : 668 x 2 = 1336 ; số lớn là : 668 x 3 = 2004. 
Bài 104 : Trong kho của một đơn vị dân công còn lại đúng một bao gạo chứa 39 kg gạo. Bác cấp dưỡng cần lấy ra 11/13 số gạo đó. Hỏi chỉ với một chiếc cân loại cân đĩa và một quả cân 1 kg, bác cấp dưỡng phải làm thế nào để chỉ sau 3 lần cân lấy ra đủ số gạo cần dùng. 
Bài giải : Số gạo bác cấp dưỡng cần lấy ra là : 39 x 11/13 = 33 (kg) 
Số gạo còn lại sau khi bác cấp dưỡng lấy là : 39 - 33 = 6 (kg) 
Cách thực hiện cân như sau : 
Lần 1 : Đặt quả cân lên một đĩa cân, đổ gạo vào đĩa cân bên kia đến khi cân thăng bằng, được 1 kg gạo. 
Lần 2 : Đặt quả cân sang đĩa có 1 kg gạo vừa cân được rồi đổ gạo vào đĩa cân trống đến khi cân thăng bằng, được 2 kg gạo. 
Lần 3 : Đặt cả 3 kg gạo cân được ở hai lần trên vào một đĩa cân, đĩa cân kia đổ gạo vào cho đến khi cân thăng bằng, được mỗi bên 3 kg gạo. 
Như vậy số gạo có được sau ba lần cân là 6 kg. Số gạo còn lại trong bao chính là số gạo mà bác cấp dưỡng cần dùng. 
Bài 105 : Lan nói một số có 4 chữ số bất kì sẽ bằng 1/5 số viết theo thứ tự ngược lại. Đố bạn biết Lan nói đúng hay sai ? 
Bài giải : Gọi số đó là (a > 0 ; a, b, c, d < 10). Số viết theo thứ tự ngược lại là Theo đầu bài ta có : 
Nhưng d x 5 có tận cùng là 0 hoặc 5 (khác 1) nên không tìm được giá trị của a hoặc d. Vậy bạn Lan nói sai. 
Bài 106 : Bác Phong có một mảnh đất hình chữ nhật, chiều rộng mảnh đất dài 8 m. Bác ngăn mảnh đó thành hai phần, một phần để làm nhà, phần còn lại để làm vườn. Diện tích phần đất làm nhà bằng 1/2 diện tích mảnh đất còn chu vi phần đất làm nhà bằng 2/3 chu vi mảnh đất. Tính diện tích mảnh đất của bác.
Bài giải : Có hai cách chia mảnh đất hình chữ nhật thành hai phần có diện tích bằng nhau. 
Cách chia 1 : như hình 1. 
Hình 1
Gọi mảnh đất hình chữ nhật là ABCD và phần đất làm nhà là AMND. 
Vì diện tích phần đất làm nhà bằng nửa diện tích mảnh đất nên M, N lần lượt là điểm chính giữa của AB và CD. Do đó AM = MB = CN = ND. 
Chu vi của phần đất làm nhà là : (AM + AD) x 2 = (AM + 8) x 2 = = AM x 2 + 8 x 2 = AB + 16. 
Chu vi của mảnh đất là : (AB + AD) 2 = (AB + 8) x 2 = = AB x 2 + 8 x 2 = AB x 2 + 16. 
Hiệu chu vi mảnh đất và chu vi phần đất làm nhà là : (AB x 2 + 16) - (AB + 16) = AB. 
Hiệu này so với chu vi mảnh đất thì chiếm : 1 - 2/3 = 1/3 (chu vi mảnh đất) 
Do đó ta có : AB x 3 = AB x 2 + 16 
AB x 3 - AB x 2 = 16 
AB x (3 - 2) = 16 
AB = 16 (m). 
Vậy diện tích mảnh đất là : 16 x 8 = 128 (m2) 
Cách chia 2 : như hình 2. 
Hình 2
Lập luận tương tự trường hợp trên, ta tìm được AB = 4 m. Điều này vô lí vì AB là chiều dài của mảnh đất hình chữ nhật, đương nhiên phải lớn hơn 8 m. Do đó trường hợp này bị loại. 
Bài 107 : Cho một phép chia hai số tự nhiên có dư. Tổng các số : số bị chia, số chia, số thương và số dư là 769. Số thương là 15 và số dư là số dư lớn nhất có thể có trong phép chia đó. Hãy tìm số bị chia và số chia trong phép chia. 
Bài giải : Số dư trong phép chia là số dư lớn nhất nên kém số chia 1 đơn vị. Ta có sơ đồ sau : 
Theo sơ đồ, nếu gọi số chia là 1 phần, thêm 1 đơn vị vào số dư và số bị chia thì tổng số phần của số chia, số bị chia và số dư (mới) gồm : 15 + 1 + 1 + 1 = 18 (phần) như vậy. Khi đó tổng của số chia, số bị chia và số dư (mới) là : 769 - 15 + 1 + 1 = 756. 
Số chia là : 756 : 18 = 42 
Số dư là : 42 - 1 = 41 
Số bị chia là : 42 x 15 + 41 = 671 
Bài 108 : Số táo của An, Bình và Chi là như nhau. An cho đi 17 quả, Bình cho đi 19 quả thì lúc này số táo của Chi gấp 5 lần tổng số táo còn lại của An và Bình. Hỏi lúc đầu mỗi bạn có bao nhiêu quả táo ?
Bài giải : Nếu coi số táo của Chi gồm 5 phần thì tổng số táo của An và Bình là 10 phần. Số táo mà An và Bình đã cho đi là : 17 + 19 = 36 (quả) 
Vì số táo của Chi gấp 5 lần tổng số táo còn lại của An và Bình nên số táo còn lại của hai bạn gồm 1 phần. Như vậy An và Bình đã cho đi số phần là : 10 - 1 = 9 (phần) 
Vậy số táo của Chi là : (36 : 9) x 5 = 20 (quả) 
Vì ba bạn có số táo bằng nhau nên mỗi bạn lúc đầu có 20 quả. 
Bài 109 : Con số nào trong các số 2, 3, 4, 5 cần thay vào dấu chấm hỏi (?) để hợp lôgic ? 
Bài giải : Gọi số thay vào hình tròn là a, số thay vào tam giác là b và số thay vào hình vuông là c, ta có : a + 3 x b = 22. Vì 3 x b chia hết cho 3 ; 22 chia cho 3 dư 1 nên a chia cho 3 dư 1 (*). Ta lại có 2 x a + 2 x c = 10, c nhỏ nhất là 2 
nên a lớn nhất là (10 - 2 x 2) : 2 = 3 (**). Từ (*) và (**) ta có a = 1. Do đó 1 + 3 x b = 22 ; b = (22 - 1) : 3 = 7 ; c = (10 - 2 x 1) : 2 = 4. 
Vậy số cần thay vào dấu chấm hỏi để hợp lôgic là số 4. 
Bài 110 : Hãy dùng tất cả các chữ số, mỗi chữ số một lần để viết năm số tự nhiên, trong đó có một số lần lượt bằng 1/2 ; 1/3 ; 1/4 và 1/5 các số còn lại.
Bài giải : Gọi 5 số tự nhiên xếp theo thứ tự từ bé đến lớn là A ; B ; C ; D ; E. 
Nếu A có 1 chữ số thì E không vượt quá 9 x 5 = 45. Như thế có 4 số có không quá 2 chữ số nên mới chỉ dùng không quá 9 chữ số (2 x 4 + 1 = 9). Vậy A có nhiều hơn 1 chữ số. Nếu E có 3 chữ số thì A có ít nhất 2 chữ số (vì 100 : 5 = 20). Như vậy có 4 số có 2 chữ số và 1 số có 3 chữ số nên phải dùng nhiều hơn 10 chữ số (2 x 4 + 3 = 11). Vậy cả 5 số phải là các số có 2 chữ số và E lớn hơn 45 chia hết cho 5. Vậy E có thể là : 95 ; 90 ; 85 ; 80 ; 75 ; 70 ; 65 ; 60 ; 55 ; 50. Ta có bảng lựa chọn sau : 
Số thứ nhất là 18, số thứ hai là 36, số thứ ba là 54, số thứ tư là 72 và số thứ 5 là 90. 
Bài 111 : Bạn hãy xóa những chữ số nào đó để được phép tính đúng : 151 x 375 = 450. 
Bài giải : Hai thừa số ở vế trái đẳng thức chỉ có các chữ số lẻ nên dù xóa các chữ số như thế nào thì kết quả phép nhân cũng là một số lẻ. Vậy vế phải chỉ có thể là 45 hoặc 5. 
Trường hợp 1 : Kết quả phép nhân là 45 ta có một cách xóa : 
Trường hợp 2 : Kết quả phép nhân là 5 ta có hai cách xóa : 
Bài 112 : Có hai tấm bìa hình vuông mà số đo các cạnh là số tự nhiên chia hết cho 3. Đặt tấm bìa hình vuông nhỏ lên tấm bìa hình vuông lớn thì diện tích phần tấm bìa không bị chồng lên là 63 cm2. Tìm cạnh của mỗi tấm bìa đó. 
Bài giải : 
Ta đặt tấm bìa hình vuông nhỏ lên tấm bìa hình vuông lớn sao cho cạnh hình vuông nhỏ trùng khít với cạnh hình vuông lớn. Gọi hai hình vuông là ABCD và AEGH. Diện tích phần tấm bìa không bị chồng lên bao gồm hai hình chữ nhật BCKE và DKGH. Hai hình chữ nhật này có BE = DH (chính là hiệu số đo các cạnh của hai hình vuông). Chuyển hình chữ nhật BCKE xuống bên cạnh hình chữ nhật DKGH ta được hình chữ nhật GKMN. Khi đó ta có diện tích hình chữ nhật HDMN là 63 cm2. Ta thấy hình chữ nhật HDMN có chiều dài và chiều rộng chính là tổng và hiệu số đo hai cạnh hình vuông. Vì hai hình vuông đều có số đo các cạnh là số tự nhiên chia hết cho 3, nên tổng và hiệu số đo hai cạnh hình vuông cũng phải là số chia hết cho 3. Do đó chiều dài và chiều rộng của hình chữ nhật HDMN đều là số chia hết cho 3. 
Vì 63 = 1 x 63 = 3 x 21 = 7 x 9 nên chiều dài và chiều rộng của hình chữ nhật HDMN phải là 21 cm và 3 cm. 
Vậy độ dài cạnh của tấm bìa hình vuông nhỏ là : (21 - 3) : 2 = 9 (cm) 
Độ dài cạnh của tấm bìa hình vuông lớn là : 9 + 3 = 12 (cm) 
Bài 113 : So sánh M và N biết : 
Bài giải : 
Bài 114 : Một bảng ô vuông gồm 3 dòng và 8 cột như hình vẽ. Trên mỗi dòng ta điền các số tự nhiên liên tiếp từ 1 đến 8 vào mỗi ô theo thứ tự tùy ý (mỗi ô một số và mỗi số chỉ điền một lần) sao cho tổng các số ở 8 cột đều 
bằng nhau. Bạn Nhi cho rằng có thể làm được còn bạn Tín khẳng định không điền được. Hỏi ai đúng, ai sai ? 
Bài giải : Giả sử có thể điền được theo yêu cầu bài toán (Bạn Nhi nói đúng). 
Tổng các số tự nhiên liên tiếp từ 1 đến 8 là : 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36. 
Mỗi dòng điền các số tự nhiên liên tiếp từ 1 đến 8 nên tổng các số trên 3 dòng trong bảng ô vuông đó là : 36 x 3 = 108. Vì tổng các số ở 8 cột đều bằng nhau nên tổng tất cả các số trong bảng ô vuông phải là một số chia hết cho 8. Nhưng 108 không chia hết cho 8 nên điều giả sử ở trên là sai tức là bạn Nhi nói sai và bạn Tín nói đúng. 
Bài 115 : Nếu đếm các chữ số ghi tất cả các ngày trong năm 2004 trên tờ lịch treo tường thì sẽ được kết quả là bao nhiêu ? 
Bài giải : Năm 2004 là năm nhuận có 366 ngày. 
Một năm có 12 tháng, mỗi tháng có 9 ngày từ mùng 1 đến mùng 9 là những ngày được viết bằng các số có 1 chữ số. Như vậy số ngày được viết bằng số có 1 chữ số là : 9 x 12 = 108 (ngày). 
Số ngày còn lại trong năm được viết bằng số có 2 chữ số là : 366 - 108 = 258 (ngày). 
Vậy đếm các chữ số ghi tất cả các ngày của năm 2004 trên tờ lịch thì ta được :
1 x 108 + 2 x 258 = 624 (chữ số).
Bài 116 : Cho : 
Hãy so sánh S và 1/2.
Bài giải : 
Bài 117 : Cho một số tự nhiên, nếu viết thêm một chữ số vào bên phải số đó ta được số mới hơn số đã cho đúng 2004 đơn vị. Tìm số đã cho và chữ số viết thêm. 
Bài giải : 
Cách 1 : Khi viết thêm một chữ số nào đó vào bên phải một số tự nhiên đã cho ta được số mới bằng 10 lần số tự nhiên đó cộng thêm chính chữ số viết thêm. Gọi chữ số viết thêm là a, ta có sơ đồ : 
9 lần số đã cho là : 2004 - a. 
Số đã cho là : (2004 - a) : 9. 
Vì số đã cho là số tự nhiên nên 2004 - a phải chia hết cho 9, số 2004 chia 9 dư 6 nên a chia cho 9 phải dư 6, mà a là chữ số nên a = 6. Số tự nhiên đã cho là (2004 - 6) : 9 = 222. 
Cách 2 : Gọi số tự nhiên đã cho là A chữ số viết thêm là x thì số mới là . 
Ta có - A = 2004 
A x 10 + x - A = 2004 (phân tích số) 
A x 10 - A + x = 2004 
A x (10 - 1) + x = 2004 (một số nhân với một tổng) 
A x 9 + x = 2004 
Vì A x 9 chia hết cho 9 ; 2004 chia 9 dư 6 nên x chia cho 9 phải dư 6. Vì x là chữ số nên x = 6. Ta có : 
A x 9 + 6 = 2004 
A x 9 = 2004 - 6 
A x 9 = 1998 
A = 1998 : 9 
A = 222. 
Vậy số tự nhiên đã cho là 222 ; chữ số viết thêm là 6. 
Bài 118 : Một tờ giấy hình vuông có diện tích là 72 cm2 thì đường chéo của tờ giấy đó dài bao nhiêu ? 
Bài giải : Gọi tờ giấy hình vuông là ABCD. Nối hai đường chéo AC và BD cắt nhau tại O (hình vẽ). 
Hình vuông được chia thành 4 tam giác vuông nhỏ có diện tích bằng nhau. 
Diện tích tam giác AOB là : 72 : 4 = 18 (cm2). 
Vì diện tích tam giác AOB bằng (OA x OB) : 2, do đó (OA x OB) : 2 = 18 (cm2). Suy ra OA x OB = 36 (cm2). 
Vì OA = OB mà 36 = 6 x 6 nên OA = 6 (cm). 
Vì AC = 2 x OA nên độ dài đường chéo của tờ giấy đó là : 6 x 2 = 12 (cm). 
Bài 119 : Trong đợt trồng cây đầu năm, lớp 5A cử một số bạn đi trồng cây và trồng được 180 cây, mỗi học sinh trồng được 8 hoặc 9 cây. Tính số học sinh tham gia trồng cây, biết số học sinh tham gia là một số chia hết cho 3. 
Bài giải : Nếu mỗi bạn trồng 9 cây thì số người tham gia sẽ ít nhất và chính là : 180 : 9 = 20 (người). 
Vì 180 : 8 = 22 (dư 4) nên số người tham gia nhiều nhất là 22 người và khi đó có 4 người trồng 9 cây, còn lại mỗi người trồng 8 cây. 
Theo đầu bài số người tham gia là một số chia hết cho 3 nên có 21 bạn tham gia. 
Bài 120 : Chứng minh rằng không thể thay các chữ bằng các chữ số để có phép tính đúng :
- = 2004
Bài giải : 
Cách 1 : Đặt tính :
Xét chữ số hàng đơn vị : Có 2 trường hợp xảy ra :
Trường hợp 1 : I > C.
Khi đó phép trừ ở hàng đơn vị không có nhớ sang hàng chục.
ở chữ số hàng chục : U - O = 0 hay U = O.
ở chữ số hàng trăm : V - H = 0 hay V = H.
Do đó (vì ở chữ số hàng nghìn C < I).
Trường hợp 2 : I < C.
Khi đó phép trừ ở hàng đơn vị có nhớ 1 sang hàng chục.
Do đó ở hàng chục : U - O - 1 = 0 hay U - O = 1 nên O < U. Phép trừ không có nhớ sang hàng trăm. ở hàng trăm : V - H = 0 hay V = H.
Vì thế (vì ở chữ số hàng chục nghìn O < U).
Vậy ta không thể thay thế các chữ bằng các chữ số để có phép tính như đã cho.
Cách 2 : Dùng tính chất chia hết của một hiệu :
Ta thấy 2 số và có tổng các chữ số bằng nhau nên cả 2 số sẽ có cùng số dư khi chia cho 9, do đó hiệu của hai số chắc chắn sẽ chia hết cho 9.
Mà 2004 không chia hết cho 9, do đó hiệu của hai số không thể bằng 2004.
Nói cách khác ta không thể thay các chữ bằng các chữ số để có phép tính đúng.

File đính kèm:

  • docBài 86.doc