50 bài tập chứng minh về đường tròn

doc11 trang | Chia sẻ: huu1989 | Lượt xem: 3384 | Lượt tải: 2download
Bạn đang xem nội dung tài liệu 50 bài tập chứng minh về đường tròn, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
50 BÀI TẬP CHỨNG MINH
VỀ ĐƯỜNG TRÒN
Bài 1. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P. Chứng minh rằng:
1. Các tứ giác AEHF, nội tiếp .
 	2. Bốn điểm B, C, E, F cùng nằm trên một đường tròn.
 	3. AE.AC = AH.AD; AD.BC = BE.AC.
 	4. H và M đối xứng nhau qua BC.
 	5. Xác định tâm đường tròn nội tiếp tam giác DEF.
Bài 2. Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE.
 	1. Chứng minh tứ giác CEHD nội tiếp .
 	2. Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
3.Chứng minh ED = BC/2
4. Chứng minh DE là tiếp tuyến của đường tròn (O).
5. Tính độ dài DE biết DH = 2 cm, AH = 6 cm.
Bài 3. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C vàà D. Các đường thẳng AD vàà BC cắt nhau tại N.
 	1. Chứng minh AC + BD = CD. 
2. Chứng minh 
 	3. Chứng minh: 
4. Chứng minh OC // BM
 	5. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
 	6. Chứng minh MN ⊥ AB.
 	7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Bài 4. Cho tam giác cân ABC (AB = AC), I là tâm đường tròn nội tiếp, K là tâm đường tròn bàng tiếp góc A , O là trung điểm của IK.
 	1. Chứng minh B, C, I, K cùng nằm trên một đường tròn.
 	2. Chứng minh AC là tiếp tuyến của đường tròn (O).
 	3. Tính bán kính đường tròn (O) Biết AB = AC = 20 cm, BC = 24 cm.
Bài 5. Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì ( M khác A) kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ⊥ MB, BD ⊥ MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
 	1. Chứng minh tứ giác AMBO nội tiếp.
 	2. Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn .
 	3. Chứng minh 
4. Chứng minh OAHB là hình thoi.
 	5. Chứng minh ba điểm O, H, M thẳng hàng.
6. Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d
Bài 6. Cho tam giác ABC vuông ở A, đường cao AH. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn (A; AH). Tiếp tuyến của đường tròn tại D cắt CA ở E.
 	1. Chứng minh tam giác BEC cân.
 	2. Gọi I là hình chiếu của A trên BE, Chứng minh rằng AI = AH.
 	3. Chứng minh rằng BE là tiếp tuyến của đường tròn (A; AH).
 	4. Chứng minh BE = BH + DE.
Bài 7. Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP > R, từ P kẻ tiếp tuyến tiếp xúc với (O) tại M.
 	1. Chứng minh rằng tứ giác APMO nội tiếp được một đường tròn.
 	2. Chứng minh BM // OP.
 	3. Đường thẳng vuông góc với AB ở O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
 	4. Biết AN cắt OP tại K, PM cắt ON tại I; PN và OM kéo dài cắt nhau tại J. Chứng minh I, J, K thẳng hàng.
Bài 8. Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kể tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E; cắt tia BM tại F tia BE cắt Ax tại H, cắt AM tại K.
 	a) Chứng minh rằng: EFMK là tứ giác nội tiếp.
 	b) Chứng minh rằng: 
 	c) Chứng minh BAF là tam giác cân.
 	d) Chứng minh rằng : Tứ giác AKFH là hình thoi.
 	e) Xác định vị trí của M để tứ giác AKFI nội tiếp được một đường tròn.
Bài 9. Cho nửa đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia AC vàà AD cắt Bx lần lượt ở E, F (F ở giữa B và E).
 	1. Chứng minh AC. AE không đổi.
 	2. Chứng minh: 
 	3. Chứng minh rằng CEFD là tứ giác nội tiếp.
Bài 10. Cho đường tròn tâm O đường kính AB vàà điểm M bất kì trên nửa đường tròn sao cho AM < MB. Gọi M’ là điểm đối xứng của M qua AB và S là giao điểm của hai tia BM, M’A. Gọi P là chân đường vuông góc từ S đến AB.
 	1. Chứng minh bốn điểm A, M, S, P cùng nằm trên một đường tròn .
2. Gọi S’ là giao điểm của MA và SP. Chứng minh rằng tam giác PS’M cân.
 	3. Chứng minh PM là tiếp tuyến của đường tròn .
Bài 11. Cho tam giác ABC (AB = AC). Cạnh AB, BC, CA tiếp xúc với đường tròn (O) tại các điểm D, E, F . BF cắt (O) tại I , DI cắt BC tại M. Chứng minh :
 	1. Tam giác DEF có ba góc nhọn.
 	2. DF // BC.
 	3. Tứ giác BDFC nội tiếp.
Bài 12. Cho đường tròn (O) bán kính R có hai đường kính AB vàà CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M (M khác O). CM cắt (O) tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở P. Chứng minh :
 	1. Tứ giác OMNP nội tiếp.
 	2. Tứ giác CMPO là hình bình hành.
 	3. CM. CN không phụ thuộc vào vị trí của điểm M.
 	4. Khi M di chuyển trên đoạn thẳng AB thì P chạy trên đoạn thẳng cố định nào?
Bài 13. Cho tam giác ABC vuông ở A (AB > AC), đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A , Vẽ nửa đường tròn đường kính BH cắt AB tại E, Nửa đường tròn đường kính HC cắt AC tại F.
 	1. Chứng minh AFHE làà hình chữ nhật.
 	2. BEFC là tứ giác nội tiếp.
 	3. AE. AB = AF. AC.
 	4. Chứng minh EF là tiếp tuyến chung của hai nửa đường tròn .
Bài 14. Cho điểm C thuộc đoạn thẳng AB sao cho AC = 10 cm, CB = 40 cm. Vẽ về một phía của AB các nửa đường tròn có đường kính theo thứ tự là AB, AC, CB và có tâm theo thứ tự là O, I, K. Đường vuông góc với AB tại C cắt nửa đường tròn (O) tại E. Gọi M. N theo thứ tự là giao điểm của EA, EB với các nửa đường tròn (I), (K).
 	1. Chứng minh EC = MN.
 	2. Chứng minh MN là tiếp tuyến chung của các nửa đường tròn (I), (K).
 	3. Tính MN.
 	4. Tính diện tích hình được giới hạn bởi ba nửa đường tròn .
Bài 15. Cho tam giác ABC vàuông ở A. Trên cạnh AC lấy điểm M, dựng đường tròn (O) có đường kính MC, đường thẳng BM cắt đường tròn (O) tại D, đường thẳng AD cắt đường tròn (O) tại S.
 	1. Chứng minh ABCD là tứ giác nội tiếp .
 	2. Chứng minh CA là tia phân giác của góc SCB.
 	3. Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các 
đường thẳng BA, EM, CD đồng quy.
 	4. Chứng minh DM là tia phân giác của góc ADE.
 	5. Chứng minh điểm M là tâm đường tròn nội tiếp tam giác ADE.
Bài 16. Cho tam giác ABC vuông ở A, vàà một điểm D nằm giữa A và B. Đường tròn đường kính BD cắt BC tại E. Các đường tròn CD, AE lần lượt cắt đường tròn tại F, G. Chứng minh :
 	1. Tam giác ABC đồng dạng với tam giác EBD.
 	2. Tứ giác ADEC và AFBC nội tiếp .
 	3. AC // FG.
 	4. Các đường thẳng AC, DE, FG đồng quy.
Bài 17. Cho tam giác đều ABC có đường cao là AH. Trên cạnh BC lấy điểm M bất kì ( M không trùng B. C, H ) ; từ M kẻ MP, MQ vuông góc với các cạnh AB. AC. Chứng minh:
 	1. Chứng minh APMQ là tứ giác nội tiếp và hãy xác định tâm O của đường tròn ngoại tiếp tứ giác đó.
 	2. Chứng minh rằng MP + MQ = AH.
 	3. Chứng minh OH ⊥PQ.
 	4. Gọi K là tâm đường tròn ngoại tiếp tứ giác MCID. Chứng minh KCOH là tứ giác nội tiếp
5. Chứng minh MI là tiếp tuyến của đường tròn đường kính BC.
Bài 18. Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì ( H không trùng O, B); trên đường thẳng vuông góc vàới OB tại H, lấy một điểm M ở ngoài đường tròn ; MA và MB thứ tự cắt đường tròn (O) tại C và D. Gọi I là giao điểm của AD và BC.
 1. Chứng minh MCID là tứ giác nội tiếp .
 2. Chứng minh các đường tròn AD, BC, MH đồng quy tại I.
Bài 19. Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tuỳ ý (B khác O, C ). Gọi M là trung điểm của đoạn AB. Qua M kẻ dây cung DE vuông góc với AB. CD cắt đường tròn đường kính BC tại I.
 	1. Chứng minh tứ giác BMDI nội tiếp .
 	2. Chứng minh tứ giác ADBE là hình thoi.
 	3. Chứng minh BI // AD.
 	4. Chứng minh I, B, E thẳng hàng.
Bài 20. Cho đường tròn (O; R) và (O’; R’) có R > R’ tiếp xúc ngoài nhau tại C. Gọi AC và BC là hai đường kính đi qua điểm C của (O) và (O’). DE là dây cung của (O) vuông góc với AB tại trung điểm M của AB. Gọi giao điểm thứ hai của DC với (O’) là F, BD cắt (O’) tại G. Chứng minh rằng:
1. Tứ giác MDGC nội tiếp .
2. Bốn điểm M, D, B, F cùng nằm trên một đường tròn
3. Tứ giác ADBE là hình thoi
4. B, E, F thẳng hàng
5. DF, AG, AB đồng quy.
6. MF = 1/2 DE.
7. MF là tiếp tuyến của (O’).
Bài 21. Cho đường tròn (O) đường kính AB. Gọi I là trung điểm của OA . và đường tròn tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q.
 	1. Chứng minh rằng các đường tròn (I) và (O) tiếp xúc ngoài nhau tại A.
 	2. Chứng minh IP // OQ.
 	3. Chứng minh rằng AP = PQ.
 	4. Xác định vị trí của P để tam giác AQB có diện tích lớn nhất.
Bài 22. Cho hình vuông ABCD, điểm E thuộc cạnh BC. Qua B kẻ đường thẳng vuông góc với DE, đường thẳng này cắt các đường thẳng DE và DC theo thứ tự ở H và K. Chứng minh:
 	1. Chứng minh BHCD là tứ giác nội tiếp .
 	2. Tính góc CHK.
 	3. Chứng minh KC. KD = KH.KB
 	4. Khi E di chuyển trên cạnh BC thì H di chuyển trên đường nào?
Bài 23. Cho tam giác ABC vuông ở A. Dựng ở miền ngoài tam giác ABC các hình vuông ABHK, ACDE.
 	1. Chứng minh ba điểm H, A, D thẳng hàng.
 	2. Đường thẳng HD cắt đường tròn ngoại tiếp tam giác ABC tại F, Chứng minh FBC là tam giác vuông cân.
 	3. Cho biết gọi M là giao điểm của BF và ED, Chứng minh 5 điểm B, K, E, M, C cùng nằm trên một đường tròn.
 	4. Chứng minh MC là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
Bài 24. Cho tam giác nhọn ABC có . Vẽ đường tròn đường kính AC có tâm O, đường tròn này cắt BA và BC tại D và E.
 	1. Chứng minh AE = EB.
 	2. Gọi H là giao điểm của CD và AE, Chứng minh rằng đường trung trực của đoạn HE đi qua trung điểm I của BH.
 	3. Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDE.
Bài 25. Cho đường tròn (O), BC là dây bất kì (BC< 2R). Kẻ các tiếp tuyến với đường tròn (O) tại B và C chúng cắt nhau tại A. Trên cung nhỏ BC lấy một điểm M rồi kẻ các đường vuông góc MI, MH, MK xuống các cạnh tương ứng BC, AC, AB. Gọi giao điểm của BM, IK là P; giao điểm của CM, IH là Q.
 	1. Chứng minh tam giác ABC cân. 
2. Các tứ giác BIMH, CIMH nội tiếp .
3. Chứng minh 
4. Chứng minh PQ ⊥ MI.
Bài 26. Cho đường tròn (O), đường kính AB = 2R. Vẽ dây cung CD ⊥ AB ở H. Gọi M là điểm chính giữa của cung CB, I là giao điểm của CB và OM. K là giao điểm của AM và CB. Chứng minh :
1. 
2. AM là tia phân giác của góc CMD.
3. Tứ giác OHCI nội tiếp.
4. Chứng minh đường vuông góc kẻ từ M đến AC cũng là tiếp tuyến của đường tròn tại M.
Bài 27. Cho đường tròn (O) và một điểm A ở ngoài đường tròn, các tiếp tuyến với đường tròn (O) kẻ từ A tiếp xúc với đường tròn (O) tại B và C. Gọi M là điểm tuỳ ý trên đường tròn ( M khác B, C), từ M kẻ MH ⊥ BC, MK ⊥ CA, MI ⊥ AB. Chứng minh	 
1. Tứ giác ABOC nội tiếp.
2. Chứng minh 
3. Chứng minh tam giác MIH đồng dạng với tam giác MHK. 
4. Chứng minh .
Bài 28. Cho tam giác ABC nội tiếp (O). Gọi H là trực tâm của tam giác ABC; E là điểm đối xứng của H qua BC; F là điểm đối xứng của H qua trung điểm I của BC.
 	1. Chứng minh tứ giác BHCF là hình bình hành.
 	2. E, F nằm trên đường tròn (O).
 	3. Chứng minh tứ giác BCFE là hình thang cân.
 	4. Gọi G là giao điểm của AI và OH. Chứng minh G là trọng tâm của tam giác ABC.
Bài 29. BC là một dây cung của đường tròn (O; R) (BC ≠ 2R). Điểm A di động trên cung lớn BC sao cho O luôn nằm trong tam giác ABC. Các đường cao AD, BE, CF của tam giác ABC đồng quy tại H.
 	1. Chứng minh tam giác AEF đồng dạng vàới tam giác ABC.
 	2. Gọi A’ là trung điểm của BC, Chứng minh AH = 2OA’.
 	3. Gọi A1 là trung điểm của EF, Chứng minh R.AA1 = AA’. OA’.
 	4. Chứng minh suy ra vị trí của A để tổng EF + FD + DE đạt giá trị lớn nhất.
Bài 30. Cho tam giác ABC nội tiếp (O; R), tia phân giác của góc BAC cắt (O) tại M. Vẽ đường cao AH và bán kính OA.
 	1. Chứng minh AM là phân giác của góc OAH.
 	2. Giả sử . Chứng minh: 
 	3. Cho và . Tính:
 	a) và của tam giác ABC.
 	b) Diện tích hình viên phân giới hạn bởi dây BC và cung nhỏ BC theo R.
Bài 31. Cho tam giác ABC có ba góc nhọn nội tiếp (O; R), biết .
 	1. Tính số đo góc BOC và độ dài BC theo R.
 	2. Vẽ đường kính CD của (O; R); gọi H là giao điểm của ba đường cao của tam giác ABC. Chứng minh BD // AH và AD // BH.
 	3. Tính AH theo R.
Bài 32. Cho đườngtròn (O), đường kính AB = 2R. Một cát tuyến MN quay quanh trung điểm H của OB.
 	1. Chứng minh khi MN di động, trung điểm I của MN luôn nằm trên một đường tròn cố định.
 	2. Từ A kẻ Ax ⊥ MN, tia Bi cắt Ax tại C. Chứng minh tứ giác CMBN là hình bình hành.
 	3. Chứng minh C là trực tâm của tam giác AMN.
 	4. Khi MN quay quanh H thì C di động trên đường nào.
 	5. Cho . Tính diện tích phần hình tròn (O) nằm ngoài tam giác AMN.
Bài 33. Cho tam giác ABC nội tiếp (O; R), tia phân giác của góc BAC cắt BC tại I, cắt đường tròn tại M. Chứng minh:
 	1. Chứng minh OM ⊥ BC.
 	2. Chứng minh .
 	3. Kẻ đường kính MN, các tia phân giác của góc B và C cắt đường thẳng AN tại P và Q. Chứng minh bốn điểm P, C , B, Q cùng thuộc một đường tròn .
Bài 34. Cho tam giác ABC cân ( AB = AC), BC = 6 cm, chiều cao AH = 4 cm, nội tiếp đường tròn (O) đường kính AA’.
 	1. Tính bán kính của đường tròn (O).
 	2. Kẻ đường kính CC’, tứ giác CAC’A’ là hình gì? Tại sao?
 	3. Kẻ AK ⊥ CC’ tứ giác AKHC là hình gì? Tại sao?
4. Tính diện tích phần hình tròn (O) nằm ngoài tam giác ABC.
Bài 35. Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = 2/3AO. Kẻ dây MN vuông góc với AB tại I, gọi C là điểm tuỳ ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E.
 	1. Chứng minh tứ giác IECB nội tiếp .
 	2. Chứng minh tam giác AME đồng dạng với tam giác ACM.
 	3. Chứng minh .
 	4. Chứng minh .
 	5. Hãy xác định vị trí của C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bài 36. Cho tam giác nhọn ABC , Kẻ các đường cao AD, BE, CF. Gọi H là trực tâm của tam giác. Gọi M, N, P, Q lần lượt là các hình chiếu vuông góc của D lên AB, BE, CF, AC. Chứng minh:
 	1. Các tứ giác DMFP, DNEQ là hình chữ nhật.
 	2. Các tứ giác BMND; DNHP; DPQC nội tiếp .
 	3. Hai tam giác HNP và HCB đồng dạng.
 	4. Bốn điểm M, N, P, Q thẳng hàng.
Bài 37. Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈(O), C ∈ (O’) . tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.
1. Chứng minh các tứ giác OBIA, AICO’ nội tiếp .
2. Chứng minh 
3. Tính số đo góc OIO’. 
4. Tính độ dài BC biết OA = 9cm, O’A = 4cm.
Bài 38. Cho hai đường tròn (O) ; (O’) tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngo i, B∈(O), C∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở M. Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh :
 	1. Chứng minh các tứ giác OBMA, AMCO’ nội tiếp .
 	2. Tứ giác AEMF là hình chữ nhật.
 	3. ME.MO = MF.MO’.
 	4. OO’ là tiếp tuyến của đường tròn đường kính BC.
 	5. BC là tiếp tuyến của đường tròn đường kính OO’.
Bài 39. Cho đườngtròn (O) đường kính BC, dấy AD vuông góc với BC tại H. Gọi E, F theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC. Gọi ( I ), (K) theo thứ tự là các đường tròn ngoại tiếp tam giác HBE, HCF.
 	1. Hãy xác định vị trí tương đối của các đường tròn (I) và (O); (K) và (O); (I) và (K).
 	2. Tứ giác AEHF là hình gì? Vì sao?.
 	3. Chứng minh AE. AB = AF. AC.
 	4. Chứng minh EF là tiếp tuyến chung của hai đường tròn (I) và (K).
 	5. Xác định vị trí của H để EF có độ dài lớn nhất.
Bài 40. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Trên Ax lấy điểm M rồi kẻ tiếp tuyến MP cắt By tại N.
1. Chứng minh tam giác MON đồng dạng vàới tam giác APB.
2. Chứng minh .
3. Chứng minh EF là tiếp tuyến chung của hai đường tròn (O) và (I).
4. Tính thể tích của hình do nửa hình tròn APB quay quanh cạnh AB sinh ra.
Bài 41. Cho tam giác đều ABC , O là trung điển của BC. Trên các cạnh AB, AC lần lượt lấy các điểm D, E sao cho 
 	1. Chứng minh tích BD. CE không đổi.
 	2. Chứng minh hai tam giác BOD; OED đồng dạng. Từ đó suy ra tia DO là tia phân giác của góc BDE
 	3. Vẽ đường tròn tâm O tiếp xúc với AB. Chứng minh rằng đường tròn này luôn tiếp xúc với DE.
Bài 42. Cho tam giác ABC cân tại A. có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O). Tiếp tuyến tại B và C lần lượt cắt AB, AC ở D và E. Chứng minh :
 	1. 
 	2. Tứ giác BCDE nội tiếp .
 	3. BC song song với DE.
Bài 43. Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn . Vẽ điểm N đối xứng với A qua M, BN cắt (O) tại C. Gọi E là giao điểm của AC và BM.
 	1. Chứng minh tứ giác MNCE nội tiếp .
 	2. Chứng minh NE ⊥ AB.
 	3. Gọi F là điểm đối xứng với E qua M. Chứng minh FA là tiếp tuyến của (O).
 	4. Chứng minh FN là tiếp tuyến của đường tròn (B; BA).
Bài 44. Cho hai đườngtròn (O) và (O’) cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O’) tại A. Dây AD của đường tròn (O’) tiếp xúc với đườntròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO’, E là điểm đối xứng với A qua B. Chứng minh rằng:
 	1. AB ⊥ KB.
 	2. Bốn điểm A, C, E, D cùng nằm trên một đường tròn.
Bài 45. Cho tam giác cân ABC ( AB = AC) nội tiếp đường tròn (O). Gọi D là trung điểm của AC; tiếp tuyến của đường tròn (O) tại A cắt tia BD tại E. Tia CE cắt (O) tại F.
 	1. Chứng minh BC // AE.
 	2. Chứng minh ABCE là hình bình hành.
 	3. Gọi I là trung điểm của CF và G là giao điểm của BC và OI. So sánh và 
Bài 46. Cho đường tròn (O) đường kính AB , trên đường tròn ta lấy hai điểm C và D sao cho cung AC = cung AD . Tiếp tuyến với đường tròn (O) vẽ từ B cắt AC tại F.
1. Chứng minh hệ thức : 
2. Chứng minh BD tiếp xúc với đường tròn đường kính AF.
3. Khi C chạy trên nửa đường tròn đường kính AB (không chứa điểm D ). Chứng minh rằng trung điểm I của đoạn chạy trên một tia cố định , xác định tia cố định đó
Bài 47. Cho 3 điểm A; B; C cố định thẳng hàng theo thứ tự. Vẽ đườngtròn (O) bất kỳ đi qua B và C ( BC không là đường kính của (O). Kẻ từ các tiếp tuyến AE và AF đến (O) (E; F là các tiếp điểm). Gọi I là trung điểm của BC; K là trung điểm của EF, giao điểm của FI với (O) là D. Chứng minh:
 	1. .
 	2. Tứ giác AEOF
 	3. Năm điểm A; E; O; I; F cùng nằm trên một đường tròn.
 	4. ED song song với AC.
 	5. Khi (O) thay đổi, tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc một đường thẳng cố định.
Bài 48. Cho tam giác ABC có ba góc nhọn. Đường tròn (O) đường kính BC cắt AB; AC tại E và D. BD cắt CE tại H; AH cắt BC tại I. Vẽ các tiếp tuyến AM và AN của (O). Chứng minh:
 	1. Các tứ giác ADHE; ADIB nội tiếp được.
 	2. 
 	3. M; H; N thẳng hàng.
 	4. Tính chu vài đường tròn ngoại tiếp tứ giác ADHE nếu tam giác ABCD là tam giác đều có cạnh bằng 2a.
Bài 49. Cho đườngtròn (O; R) và điểm M nằm ngoài (O). Kẻ hai tiếp tuyến MB; BC của (O) và tia Mx nằm giữa hai tia MO và MC . Qua B kẻ đường thẳng song song với Mx, đườngthẳng này cắt (O) tại điểm thứ hai là A; AC cắt Mx tại I. Vẽ đường kính BB’. Qua O kẻ đườngthẳng vuông góc với BB’ đường này cắt ; BC lần lượt tại K và E . Chứng minh:
 	1. Tứ giác MOIC nội tiếp.
 	2. OI vuông góc với Mx.
 	3. ME có độ dài không phụ thuộc vị trí của điểm M.
 4. Khi M di động m OM = 2R thì K chuyển động trên đườngn o? Tại sao?
Bài 50. Cho (O; R) và điểm A ∈ (O). Một góc vuông xAy quay quanh A và luôn thoả mãn Ax; Ay cắt (O). Gọi các giao điểm thứ hai của Ax; Ay với (O) lần lượt là B; C. Đường tròn đường kính AO cắt AB; AC tại các điểm thứ hai tương ứng là M; N. Tia OM cắt (O) tại P. Gọi H là trực tâm tam giác AOP. Chứng minh:
 	1. Tứ giác AMON là hình chữ nhật.
 	2. MN // BC.
 	3. Tứ giác PHOP nội tiếp.
 	4. Xác định vị trí của góc xAy sao cho tam giác AMN có diện tích lớn nhất

File đính kèm:

  • doc50 BT Hinh hoc ve duong tron.doc