50 đề thi vào lớp 10 môn Toán năm học 2011-2012 - Phần 2

doc10 trang | Chia sẻ: huu1989 | Lượt xem: 1003 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu 50 đề thi vào lớp 10 môn Toán năm học 2011-2012 - Phần 2, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 TRUNG HỌC PHỔ THÔNG
BÌNH ĐỊNH 
Bài 1 (2điểm)
Giải hệ phương trình : 
Cho hàm số y = ax + b.Tìm a và b biết rằng đồ thị của hàm số đã cho song song với đường thẳng y = -2x +3 và đi qua điểm M( 2;5)
Bài 2: (2điểm)
 Cho phương trình (m là tham số)
 a)Giải phương trình khi m = -5
 b)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
 c)Tìm m sao cho phương trình đã cho có hai nghiêm x1, x2 thỏa mãn hệ thức 
Bài 3 : (2điểm)
 Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và bình phương độ dài đường chéo gấp 5 lần chu vi.Tính diện tích hình chữ nhật
Bài 4: (3điểm)
 Cho đường tròn tâm O, vẽ dây cung BC không đi qua tâm.Trên tia đối của tia BC lấy điểm M bất kì.Đường thẳng đi qua M cắt đường (O) lần lượt tại hai điểm N và P (N nằm giữa M và P) sao cho O năm bên trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP.Hai dây cung AB,AC cắt NP lần lượt tại D và E.
 a)Chứng minh tứ giác BDEC nội tiếp.
 b) Chứng minh : MB.MC = MN.MP
 c) Bán kính OA cắt NP tại K. Chứng minh: 
Bài 5 (1điểm)
 Tìm giá trị nhỏ nhất của biểu thức: (với x 0
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
KÌ THI TUYỂN SINH LỚP 10 THPT 
NĂM HỌC 2011 – 2012
Môn thi: TOÁN
(Đợt 1)
Câu 1 (3,0 điểm).
Giải các phương trình: 
2) Cho hai đường thẳng (d1): ; (d2): cắt nhau tại I. Tìm m để đường thẳng (d3): đi qua điểm I.
Câu 2 (2,0 điểm).
Cho phương trình: (1) (với ẩn là ).
	1) Giải phương trình (1) khi =1.
2) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi .
3) Gọi hai nghiệm của phương trình (1) là ; . Tìm giá trị của để ; là độ dài hai cạnh của một tam giác vuông có cạnh huyền bằng .
Câu 3 (1,0 điểm).
 Một hình chữ nhật có chu vi là 52 m. Nếu giảm mỗi cạnh đi 4 m thì được một hình chữ nhật mới có diện tích 77 m2. Tính các kích thước của hình chữ nhật ban đầu?
Câu 4 (3,0 điểm).
Cho tam giác ABC có Â > 900. Vẽ đường tròn (O) đường kính AB và đường tròn (O’) đường kính AC. Đường thẳng AB cắt đường tròn (O’) tại điểm thứ hai là D, đường thẳng AC cắt đường tròn (O) tại điểm thứ hai là E. 
Chứng minh bốn điểm B, C, D, E cùng nằm trên một đường tròn.
Gọi F là giao điểm của hai đường tròn (O) và (O’) (F khác A). Chứng minh ba điểm B, F, C thẳng hàng và FA là phân giác của góc EFD.
Gọi H là giao điểm của AB và EF. Chứng minh BH.AD = AH.BD.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG
KÌ THI TUYỂN SINH LỚP 10 THPT 
NĂM HỌC 2011 – 2012
(Đợt 2)
Câu 1 (2,5 điểm).
1) Cho hàm số .
a. Tính khi: .
b. Tìm biết: .
2) Giải bất phương trình: 
Câu 2 (2,5 điểm).
1) Cho hàm số bậc nhất (d) 
a. Tìm m để hàm số đồng biến.
b. Tìm m để đồ thị hàm số (d) song song với đồ thị hàm số .
2) Cho hệ phương trình 
 Tìm giá trị của để hệ có nghiệm sao cho .
Câu 3 (1,0 điểm).
Hai người thợ quét sơn một ngôi nhà. Nếu họ cùng làm trong 6 ngày thì xong công việc. Hai người làm cùng nhau trong 3 ngày thì người thứ nhất được chuyển đi làm công việc khác, người thứ hai làm một mình trong 4,5 ngày (bốn ngày rưỡi) nữa thì hoàn thành công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu.
Câu 4 (3,0 điểm).
Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AO lấy điểm M (M khác A và O). Tia CM cắt đường tròn (O; R) tại điểm thứ hai là N. Kẻ tiếp tuyến với đường tròn (O; R) tại N. Tiếp tuyến này cắt đường thẳng vuông góc với AB tại M ở P.
Chứng minh: OMNP là tứ giác nội tiếp.
Chứng minh: CN // OP.
Khi . Tính bán kính của đường tròn ngoại tiếp tam giác OMN theo R.
Câu 5 (1,0 điểm).
Cho ba số thoả mãn và . Tìm giá trị nhỏ nhất của biểu thức: A = 
---------------------------Hết---------------------------
Së gi¸o dôc vµ ®µo t¹o phó thä
K× thi tuyÓn sinh vµo líp 10 Trung häc phæ th«ng
N¨m häc 2011-2012
Câu 1 (2,5 điểm)
Rút gọn 
Giải bất phương trình : 3x-2011<2012
Giải hệ phương trình :
Câu 2 (2,0 điểm)
	a)Giải phương trình : 2x2 -5x+2=0
	b)Tìm các giá trị tham số m để phương trình x2 –(2m-3)x+m(m-3)=0
có 2 nghiêm phân biệt x1; x2 thỏa mãn điều kiện 2x1- x2=4
Câu 3 (1,5 điểm)
 Một người đi xe đạp từ A đến B với vận tốc không đổi.Khi đi từ B đến A người đó tăng vận tốc thêm 2 km/h so với lúc đi ,vì vậy thời gian về ít hơn thời gian đi 30 phút .tính vận tốc lúc đi từ A đến B ,biết quãng đường AB dài 30 km.	
Câu 4 (3,0 điểm)
	Cho đường tròn (O;R),M nằm ngoài (O) kẻ hai tiếp tuyến MA; MB với (O)
 ( A;B là tiếp điểm).Kẻ tia Mx nằm giữa MO và MA và cắt (O) tại C ;D.Gọi I là trung điểm CD đường thẳng OI cắt đường thẳng AB tại N;Giải sử H là giao của AB và MO
Chứng minh tứ giác MNIH nội tiếp đường tròn.
Chứng minh rằng tam giác OIH đồng dạng với tam giác OMN , từ đó suy ra OI.ON=R2
Gỉa sử OM=2R ,chứng minh tam giác MAB đều.
Câu 5 (1,0 điểm)
	 Cho x, y là các số thực thỏa mãn điều kiện: 
	Tìm giá trị nhỏ nhất của biểu thức 
------------Hết---------------
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT
 QUẢNG NAM	 NĂM HỌC 2011-2012
Bài 1 (2.0 điểm )
	Rút gon các biểu thức sau :
	A = 	
	 B = 
Bài 2 (2.5 điểm )
 1) Giải hệ phương trình : 	
 2) Cho phương trình bậc hai : x2 – mx + m – 1 = 0 (1)
 a) Giải phương trình (1) khi m = 4 .
 b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1 ; x2 thỏa mãn hệ thức : 
Bài 3 (1.5 điểm )
	Cho hàm số y = x2 
 1) Vẽ đồ thị ( P) của hàm số đó.
 2) Xác định a và b để đường thẳng ( d) : y = ax + b cắt trục tung tại điểm có tung độ 
 bằng - 2 và cắt đồ thị (P) nói trên tại điểm có hoành độ bằng 2.
Bài 4 (4.0 điểm )
	Cho nửa đường tròn tâm (O ;R) ,đường kính AB.Gọi C là điểm chính giữa của cung AB.Trên tia đối của tia CB lấy điểm D sao cho CD = CB. OD cắt AC tại M.
 Từ A , kẻ AH vuông góc với OD ( H thuộc OD). AH cắt DB tại N và cắt nửa đường tròn (O,R) tại E .
1) Chứng minh MCNH là tứ giác nội tiếp và OD song song với EB.
2) Gọi K là giao điểm của EC và OD. Chứng minh ,Suy ra 
 C là trung điểm của KE.
3) Chứng minh tam giác EHK vuông cân và MN // AB.
4) Tính theo R diện tích hình tròn ngoại tiếp tứ giác MCNH
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÁI BÌNH
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011 - 2012
Môn thi: TOÁN
Thời gian làm bài: 120 phút ,không kể thời gian giao đề 
Bài 1. (2,0 điểm)
	 Cho biểu thức: 	 với .
Rút gọn A.
Tính giá trị của A khi x = .
Bài 2. (2,0 điểm)
	Cho hệ phương trình : ( m là tham số ).
Tìm m để hệ phương trình có nghiệm (x ;y) trong đó x = 2.
Tìm m để hệ phương trình có nghiệm duy nhất (x ;y) thoả mãn 2x + y = 9.
Bài 3. (2,0 điểm)Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = ax + 3 
 ( a là tham số ) 
1. Vẽ parabol (P).
2. Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt. 
3. Gọi là hoành độ giao điểm của (P) và (d), tìm a để x1 +2x2 = 3
Bài 4. (3,5 điểm)Cho đường tròn O, đường kính AB = 2R. Điểm C năm trên tia đối của tia BA sao cho BC = R. Điểm D thuộc đường tròn tâm O sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD tại M.
	1. Chứng minh rằng:
a) Tứ giác BCMD là tứ giác nội tiếp. 
	b) AB.AC = AD. AM. 
	c) CD là tiếp tuyến của đường tròn tâm O.
	2. Đường tròn tâm O chia tam giác ABM thành hai phần, tính diện tích phần tam giác
 ABM nằm ngoài đường tròn tâm O theo R.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2011-2012
Bài 1. (2,0 điểm)
1. Rút gọn các biểu thức sau:
	 a) A = 	b)B = 
2.Biết rằng đồ thịcủa hàm số y = ax - 4 đi qua điểm M(2;5). Tìm a
Bài 2. (2,0 điểm)
1. Giải các phương trình sau:
 a) 	 b) 
2.Cho phương trình: với x là ẩn số.
 a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m .
 b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của biểu thức 
 E = 
Bài 3 . (2điểm) Giải bài toán sau bằng cách lập hệ phương trình:
	Nhà Mai có một mảnh vườn trồng rau bắp cải . Vườn được đánh thành nhiều luống mỗi luống cùng trồng một số cây bắp cải . Mai tính rằng : nếu tăng thêm 7 luống rau nhưng mỗi luống trồng ít đi 2 cây thì số cây toàn vườn ít đi 9 cây , nếu giảm đi 5 luống nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 15 cây . Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ?
Bài 4 . (3,0 điểm) 
	Cho đường tròn (O) đường kính AB và một điểm C cố định trên bán kính OA (C khác A và O) , điểm M di động trên đường tròn (M khác A,B) . Qua M kẻ đường thẳng vuông góc với CM , đường thẳng này cắt các tiếp tuyến tại A và B của đường tròn (O) lần lượt tại D và E . 
Chứng minh ACMD và BCME là các tứ giác nội tiếp .
Chứng minh DCEC.
Tìm vị trí của điểm M để diện tích tứ giác ADEB nhỏ nhất .
Hết 
UBND TỈNH AN GIANG ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT
SỞ GIÁO DỤC-ĐÀO TẠO NĂM HỌC 2011-2012
 -------------- -------------------
-------------------------------------------------------------------------------------------------------------
Bài 1 (2,0 điểm) (không được dùng máy tính)
 1-Thực hiện phép tính :
 2-Trục căn thức ở mẫu :
Bài 2 (2,5 điểm)
 1-Giải phương trình : 2x2 – 5x – 3 = 0
 2-Cho hệ phương trình ( m là tham số ) :
 a. Giải hệ phương trình khi m = 1.
 b.Tìm giá trị của m để hệ phương trình có nghiệm duy nhất.
Bài 3 (2,0 điểm )
 Trên cùng một mặt phẳng tọa độ, cho parabol (P): y=và đường thẳng (d):
 1.Bằng phép tính, hãy tìm tọa độ giao điểm của (P) và (d) .
 2.Tìm m để đường thẳng (d’) :y= mx – m tiếp xúc với parabol (P)
Bài 4 (3,5 điểm)
 Cho đường tròn (O;r) và hai đường kính AB,CD vuông góc với nhau.Trên cung nhỏ DB, lấy điểm N ( N khác B và D).Gọi M là giao điểm của CN và AB.
 1-Chứng minh ODNM là tứ giác nội tiếp.
 2-Chứng minh AN.MB =AC.MN.
 3-Cho DN= r .Gọi E là giao điểm của AN và CD.Tính theo r độ dài các đoạn ED, EC .
SỞ GD-ĐT QUẢNG BÌNH ĐỀ TUYỂN SINH VÀO 10 THPT NĂM HỌC 2011-2012
Câu 1 ( 2 điểm) Cho Phương trình x2 - 2(n-1)x – 3 = 0 ( n tham số)
Giải phương trình khi n = 2.
Gọi x1: x2 là hai nghiệm của phường trình. Tìm n để 
Câu 2 ( 2 điểm) Cho biểu thức với x>0 và 
Thu gọn Q
Tìm các giá trị của sao cho và Q có giá trị nguyên.
Câu 3 (1,5điểm) Cho ba đường thẳng (l1), ( l2), (l3)
Tim tọa độ giao điểm B của hai đường thẳng (l1) và ( l2). 
Tìm m để ba đường thẳng (l1), ( l2), (l3) đổng quy.
Câu 4 (1 điểm) cho x,y các số dương và 
 Chứng minh bất đẳng thức: 
Câu 5 ( 3,5 điểm) Cho đường tròn (O), đường kính MN và dây cung PQ vuông góc với MN Tại I ( khác M, N). trên cung nhỏ NP lấy điểm J (khác N, P). Nối M với J cắt PQ tại H. 
Chứng minh: MJ là phân giác của góc .
Chứng minh: tứ giác HINJ nội tiếp.
Gọi giao điểm của PN với MJ là G; JQ với MN là K. Chứng minh GK// PQ.
Chứng minh G là tâm đường tròn nội tiếp .
së gi¸o dôc vµ ®µo t¹o K× THI TUYÓN SINH líp 10 THPT
 L¹ng s¬n N¨M häc 2011 - 2012
Câu 1 (2 điểm):
Tính giá trij của các biểu thức: A = ; B = 
Rút gọn biểu thức: P = Với x>0, y>0 và xy.
	Tính giá trị của biểu thức P tại x = 2012 và y = 2011.
Câu 2 ((2điểm):
	Vẽ trên cùng một hệ trục tọa độ, đồ thị của các hàm số y = x2 và y = 3x – 2.
Tính tọa độ các giao điểm của hai đồ thì trên.
Câu 3 (2 điểm):
Tính độ dài các cạnh của hình chữ nhật, biết chiều dài hơn chiều rộng 1 m và độ dài mỗi đường chéo của hình chữ nhật là 5 m.
Tìm m để phương trinh x - 2 + m = 0 có hai nghiệm phân biệt.
Câu 4 (2 điểm)
	Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AB, AC với đường tròn (B,C là những tiếp điểm).
Chứng minh ABOC là tứ giác nội tiếp. Nêu cách vẽ các tiếp tuyến AB, AC.
BD là đường kính của đường tròn (O; R). Chứng minh: CD//AO.
Cho AO = 2R, tính bán kính đường tròn nội tiếp tam giác ABC.
Câu 5 (2 điểm)
Tìm số tự nhiên n biết: n + S(n) = 2011, trong đó S(n) là tổng các chữ số của n.
SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH
 *********
KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC 2011 – 2012
***************
Câu 1: (1,5điểm)
Cho biểu thức 
Rút gọn biểu thức A.
Tìm các giá trị của x sao cho A<0.
Câu 2: (0,75điểm)
Giải hệ phương trình sau: 
Câu 3: (1,75điểm)
Vẽ đồ thị hàm số (P): . Tìm m để đường thẳng (d): y = x + m tiếp xúc với đồ thị (P).
Câu 4: (3.0điểm)
Cho phương trình: (m là tham số)
Giải phương trình (1) khi m = 4.
Chứng tỏ rằng, với mọi giá trị của m phương trình (1) luôn có hai nghiệm phân biệt.
Gọi x1, x2 là hai nghiệm của phương trình (1). Chứng minh rằng biểu thức không phụ thuộc vào m.
Câu 5: (3.0điểm)
Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn đó (M khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E và cắt tia BM tại F; BE cắt AM tại K.
Chứng minh rằng: tứ giác EFMK là tứ giác nội tiếp.
Chứng minh tam giác BAF là tam giác cân.
Tia BE cắt tia Ax tại H. Tứ giác AHFK là hình gì? 
----------------Hết --------------------
Së gi¸o dôc vµ ®µo t¹o
 b¾c giang
®Ò thi tuyÓn sinh líp 10thpt
N¨m häc 2011 - 2012
M«n thi: to¸n
C©u 1: (2,0 ®iÓm)
	1. TÝnh .
	2. T×m c¸c gi¸ trÞ cña tham sè m ®Ó hµm sè bËc nhÊt y = (m - 2)x + 3 ®ång biÕn trªn R.
C©u 2: (3,0 ®iÓm)
	1. Rót gän biÓu thøc , víi a0; a1.
	2. Gi¶i hÖ ph­¬ng tr×nh: .
	3. Cho ph­¬ng tr×nh: (1), víi m lµ tham sè. T×m c¸c gi¸ trÞ cña m ®Ó ph­¬ngg tr×nh (1) cã hai nghiÖm tho¶ m·n .
C©u 3: (1,5 ®iÓm)
	Mét m¶nh v­ên h×nh ch÷ nhËt cã diÖn tÝch 192 m2. BiÕt hai lÇn chiÒu réng lín h¬n chiÒu dµi 8m. TÝnh kÝch th­íc cña h×nh ch÷ nhËt ®ã.
C©u 4: (3 ®iÓm)
	Cho nöa ®­êng trßn (O), ®­êng kÝnh BC. Gäi D lµ ®iÓm cè ®Þnh thuéc ®o¹n th¼ng OC (D kh¸c O vµ C). Dùng ®­êng th¼ng d vu«ng gãc víi BC t¹i ®iÓm D, c¾t nöa ®­êng trßn (O) t¹i ®iÓm A. Trªn cung AC lÊy ®iÓm M bÊt kú (M kh¸c A vµ C), tia BM c¾t ®­êng th¼ng d t¹i ®iÓm K, tia CM c¾t ®­êng th¼ng d t¹i ®iÓm E. §­êng th¼ng BE c¾t nöa ®­êng trßn (O) t¹i ®iÓm N (N kh¸c B).
	1. Chøng minh tø gi¸c CDNE néi tiÕp.
	2.Chøng minh ba ®iÓm C, K vµ N th¼ng hµng.
	3. Gäi I lµ t©m ®­êng trßn ngo¹i tiÕp tam gi¸c BKE. Chøng minh r»ng ®iÓm I lu«n n»m trªn mét ®­êng th¼ng cè ®Þnh khi ®iÓm M thay ®æi.

File đính kèm:

  • doc50 de thi vao lop 10 tinhTP nam 20112012 Phan 2.doc
Đề thi liên quan