Bài giảng Khái niệm về sự trao đổi chất và trao đổi năng lượng

doc11 trang | Chia sẻ: haohao | Lượt xem: 1183 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Khái niệm về sự trao đổi chất và trao đổi năng lượng, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chương 8
Khái niệm về sự trao đổi chất và 
trao đổi năng lượng
Trao đổi chất và trao đổi năng lượng là bản chất của hoạt động sống của mọi cơ thể sinh vật, là biểu hiện tồn tại sự sống. Sự trao đổi chất của cơ thể luơn gắn liền với sự trao đổi và chuyển hĩa năng lượng. Chính vì vậy, trao đổi chất và trao đổi năng lượng là hai mặt của một quá trình liên quan chặt chẽ với nhau.
8.1. Khái niệm chung về sự trao đổi chất
Cơ thể sống tồn tại, phát triển trong mơi trường và khơng ngừng liên hệ mật thiết với mơi trường đĩ. Nĩ hấp thụ các chất khác nhau từ mơi trường ngồi, làm biến đổi các chất đĩ và một mặt tạo nên các yếu tố cẩu tạo của bản thân cơ thể sống, mặt khác lại thải vào mơi trường ngồi các sản phẩm phân giải của chính cơ thể cũng như các sản phẩm hình thành trong quá trình sống của cơ thể. Quá trình đĩ thực hiện được là do các biến đổi hĩa học liên tục xảy ra trong cơ thể. Người ta gọi tồn bộ các biến đổi hĩa học đĩ là sự trao đổi chất.
Sự trao đổi chất bao gồm nhiều khâu chuyển hĩa trung gian. Các quá trình này xảy ra phức tạp trong từng mơ, từng tế bào bao gồm 2 quá trình cơ bản là đồng hĩa (tổng hợp) và dị hĩa (phân giải) tạo nên chu kỳ trao đổi chất liên tục giữa chất nguyên sinh và chất nhận vào.
Quá trình đồng hĩa là sự hấp thụ các chất mới từ mơi trường bên ngồi, biến đổi chúng thành sinh chất của mình; biến đổi các chất đơn giản thành chất phức tạp hơn, sự tích lũy năng lượng cao hơn. Đây là quá trình biến đổi các chất khơng đặc hiệu (các chất hữu cơ của thức ăn như glucid, lipid, protein) từ các nguồn khác nhau (thực vật, động vật, vi sinh vật) thành các chất hữu cơ khác (glucid, lipid, protein) đặc hiệu của cơ thể. Đặc điểm của quá trình này là thu năng lượng. Năng lượng cần thiết cung cấp cho các phản ứng tổng hợp trên chủ yếu ở dạng liên kết cao năng của ATP.
	Quá trình dị hĩa là quá trình ngược lại của quá trình đồng hĩa, là sự biến đổi các chất phức tạp thành các chất đơn giản và giải phĩng năng lượng cần thiết cho hoạt động sống. Như vậy đây là quá trình phân giải các chất dự trữ, các chất đặc trưng của cơ thể thành các sản phẩm phân tử nhỏ khơng đặc trưng và cuối cùng thành những chất thải (CO2, H2O, NH3...) để thải ra mơi trường. Năng lượng được tích trữ trong ATP và được sử dụng cho nhiều phản ứng thu năng lượng khác.
	Hai quá trình đồng hĩa và dị hĩa xảy ra liên tục liên quan với nhau và khơng tách rời nhau. Quá trình đồng hĩa là quá trình địi hỏi năng lượng cho nên đồng thời phải xảy ra quá trình dị hĩa để cung cấp năng lượng cho quá trình đồng hĩa. Do đĩ sự trao đổi chất và trao đổi năng lượng là hai mặt của một vấn đề.
	Tùy theo kiểu trao đổi chất, người ta chia sinh vật ra thành hai nhĩm: nhĩm sinh vật tự dưỡng và nhĩm sinh vật dị dưỡng. 
Nhĩm sinh vật tự dưỡng bao gồm tất cả các sinh vật tự tổng hợp chất dinh dưỡng cần thiết cho chúng. Để tồn tại và phát triển, nhĩm này chỉ cần H2O, CO2, muối vơ cơ và nguồn năng lượng. Cĩ hai hình thức tự dưỡng. Đĩ là hình thức tự dưỡng quang hợp và hình thức tự dưỡng hĩa hợp. Hình thức đầu thể hiện ở cây xanh và vi khuẩn tía, vi khuẩn lưu huỳnh vốn dùng quang năng để tổng hợp chất hữu cơ. Hình thức sau được thể hiện ở một số vi khuẩn nhận năng lượng trong quá trình oxy hĩa các chất vơ cơ.
Nhĩm sinh vật dị dưỡng bao gồm các sinh vật khơng cĩ khả năng tự tổng hợp chất dinh dưỡng từ các chất vơ cơ mà phải sống nhờ vào các chất dinh dưỡng của nhĩm sinh vật tự dưỡng tổng hợp nên.
Như vậy, quá trình trao đổi chất của thế giới sinh vật liên quan chặt chẽ với nhau, tạo nên chu kỳ trao đổi chất chung.
Ngồi cách chia trên, cũng theo kiểu trao đổi chất, người ta chia sinh vật thành hai nhĩm lớn: nhĩm hiếu khí (aerob) và nhĩm kỵ khí (anaerob). Nhĩm hiếu khí là kiểu trao đổi chất mà các quá trình oxy hĩa cĩ sự tham gia của oxy khí quyển. Nhĩm kỵ khí là kiểu trao đổi chất mà các quá trình oxy hĩa khơng cĩ sự tham gia của oxy khí quyển.
Đa số các sinh vật thuộc nhĩm hiếu khí. Nhĩm kỵ khí chỉ là một phần nhỏ của nhĩm sinh vật dị dưỡng bậc thấp. Tuy vậy, giữa các cơ thể hiếu khí và kỵ khí khơng cĩ ranh giới rõ ràng. Sinh vật hiếu khí biểu hiện rõ ràng nhất như người chẳng hạn cũng cĩ thực hiện một phần các quá trình trao đổi chất theo con đường kỵ khí (ví dụ như mơ cơ)
Quá trình chuyển hĩa trong cơ thể sống mang tính thống nhất và riêng biệt. Các con đường chuyển hĩa lớn trong mọi cơ thể động vật, thực vật đơn bào, đa bào đều theo những giai đoạn tương tự nhau. Tuy vậy, nếu đi sâu vào từng mơ, cơ quan, cá thể từng lồi thì lại cĩ những nét riêng biệt.
Các phản ứng hĩa học trong cơ thể xảy ra liên tục ở pH trung tính, 370C, dưới tác dụng xúc tác của enzyme. 
Ở động vật, các quá trình chuyển hĩa được điều khiển bởi hệ thống thần kinh
8.2. Khái niệm chung về trao đổi năng lượng và năng lượng sinh học
Trao đổi chất luơn gắn liền với trao đổi năng lượng. Đối với cơ thể người, động vật và phần lớn vi sinh vật thì nguồn năng lượng duy nhất là năng lượng hĩa học của các chất trong thức ăn. Trong cơ thể, các chất dinh dưỡng chủ yếu và quan trọng là glucid, lipid và protein đều bị oxy hĩa. Lipid và glucid đi vào cơ thể bị “đốt cháy” sẽ sinh ra CO2, H2O và NH3, chất này tác dụng với CO2 chuyển thành carbamid (ure).
Các quá trình oxy hĩa khử sinh học thuộc các phản ứng dị hĩa cĩ ý nghĩa rất quan trọng. Chúng khơng những chỉ là nguồn năng lượng quan trọng dùng để thực hiện các phản ứng tổng hợp khác nhau mà cịn là nguồn cung cấp các hợp chất trung gian dùng làm nguyên liệu cho các phản ứng tổng hợp và đĩng vai trị hết sức quan trọng trong việc liên hợp các quá trình trao đổi chất.
Để tồn tại và phát triển, cơ thể cần phải được cung cấp liên tục năng lượng. Trong hoạt động sống của mình, cơ thể biến đổi năng lượng từ dạng này sang dạng khác và sự biến đổi năng lượng trong cơ thể sống cũng tuân theo các quy luật vật lý như sự biến đổi năng lượng ở giới vơ cơ.
So sánh về năng lượng sinh học và năng lượng kỹ thuật ta thấy cĩ những đặc điểm sau: thứ nhất, cơ thể khơng sử dụng nhiệt năng thành cơng cĩ ích được; thứ hai, sự giải phĩng năng lượng trong cơ thể là dần dần, từng bậc; thứ ba, sự giải phĩng năng lượng đi kèm theo sự phosphoryl hĩa nghĩa là năng lượng giải phĩng được cố định lại ở liên kết este với phosphoric acid trong phân tử ATP vốn được gọi là liên kết cao năng. Từ dạng năng lượng trung gian này (ATP) mà cĩ thể dự trữ và sử dụng năng lượng vào các hoạt động sống; thứ tư, cĩ thể khơng sử dụng được năng lượng tự do của tất cả các loại phản ứng phát nhiệt mà nguồn năng lượng duy nhất cơ thể sử dụng là của các quá trình oxy hĩa.
8.2.1. Sự biến đổi năng lượng tự do
Sự thay đổi về đại lượng của năng lượng tự do là một chỉ tiêu quan trọng nhất của hiệu ứng năng lượng tức là hệ số của tác dụng hữu hiệu của phản ứng. Cĩ thể định nghĩa năng lượng tự do là lượng năng lượng mà ở một nhiệt độ nhất định nào đĩ cĩ thể biến thành cơng.
Tế bào cĩ thể tạo ra và duy trì được cấu trúc trật tự và phức tạp của mình nhờ chúng liên tục tiếp nhận năng lượng tự do từ mơi trường ở dạng quang năng hoặc hĩa năng và biến hĩa nĩ thành các dạng năng lượng sinh học để phục vụ cho các quá trình hoạt động sống. Sự biến hĩa, tích lũy và sử dụng năng lượng sinh học xảy ra song song với sự chuyển hĩa vật chất và tuân thủ các nguyên tắc của nhiệt động học.
Những biến đổi năng lượng tự do của hệ thống phản ứng được ký hiệu bằng rG cĩ giá trị là Kcal/mol. Đại lượng của rG là hiệu số giữa lượng năng lượng tự do của trạng thái cuối (sau phản ứng) G2 và năng lượng tự do của trạng thái đầu (trước phản ứng) G1. Nếu rG0 (cĩ giá trị dương), phản ứng thu nhiệt, muốn thực hiện phản ứng cần phải cung cấp năng lượng. Các phản ứng thu nhiệt chỉ cĩ thể được thực hiện cùng với các phản ứng tỏa nhiệt, nghĩa là việc tăng năng lượng tự do chỉ cĩ thể cĩ được do các phản ứng liên hợp khác tiến hành với việc giảm năng lượng tự do. Các quá trình cơ bản gắn liền với hoạt động sống của cơ thể, nhiều kiểu làm việc của tế bào, các phản ứng tổng hợp đều là những phản ứng thu nhiệt luơn luơn liên hợp với các phản ứng tỏa nhiệt.
rG được tính theo cơng thức:
rG = rG 0 + RT lnK
trong đĩ rG0 là sự biến đổi năng lượng tự do tiêu chuẩn của phản ứng ở 250C khi nồng độ của tất cả các chất phản ứng là 1 mol và áp suất là 101,3 KPa (1atm), R là hằng số khí, T là nhiệt độ tuyệt đối, K là hằng số cân bằng của phản ứng bằng [C]c. [D]d /[A]a[B]b tức là nồng độ của các chất tham gia phản ứng A + B D C + D; a, b, c, d là số lượng phân tử A, B, C, D tham gia phản ứng. 
Trong hệ thống sinh học, khi tính giá trị rG0 cần chú ý đến pH, ở nồng độ H+ là 1 mol, pH=0. Trạng thái ion hĩa của nhiều hợp chất sinh học bị biến đổi khi pH thay đổi. Vì vậy, để thuận tiện cho việc tính tốn, xem trạng thái chuẩn của pH là 7 và ký hiệu sự thay đổi năng lượng tự do chuẩn ở pH 7,0 là rG0'.
8.2.2. Liên kết cao năng và vai trị của ATP
Các liên kết hĩa học giữa các nguyên tử đều là những tác nhân mang chủ yếu của năng lượng tự do trong các chất hữu cơ. Vì vậy, trong việc biến tạo của các liên kết hĩa học trong phân tử, mức năng lượng tự do của hợp chất sẽ thay đổi. Xét về mặt năng lượng trong các hợp chất hữu cơ cĩ hai loại liên kết: Liên kết thường và liên kết cao năng (liên kết giàu năng lượng). Liên kết thường là liên kết mà khi phân giải hoặc tạo thành nĩ cĩ sự biến đổi năng lượng vào khoảng 3 Kcal trên một phân tử gam (Ví dụ như liên kết este); cịn đối với liên kết cao năng sự biến đổi này lớn hơn nhiều từ 7 – 12 kcal/mol. Trong các hoạt động sống của cơ thể sinh vật, các quá trình tổng hợp các chất phân tử lớn từ các chất đơn giản, vận chuyển tích cực các chất qua màng tế bào, quá trình vận động v.v. luơn địi hỏi năng lượng tự do. Trong hệ thống sống cần cĩ các chất, các hệ thống nhận năng lượng tự do từ các quá trình này chuyển đến cho các quá trình khác. ATP là chất phổ biến giữ vai trị này, là chất cĩ vai trị trung tâm trong trao đổi năng lượng ở tế bào và cơ thể sống, là chất liên kết hoặc cĩ thể nĩi là mắt xích giữa hệ thống sử dụng năng lượng và hệ thống sản sinh ra năng lượng. 
Trong phân tử ATP cĩ 3 gốc phosphate, 1 gốc kết hợp với gốc ribose qua liên kết este, 2 liên kết giữa 3 gốc phosphate là liên kết anhydric. Đĩ là các liên kết cao năng được ký hiệu bằng dấu “ ~ ”. ATP ( Adenosine Tri Phosphate) được biểu thị một cách khái quát như sau: Adenosine (trong đĩ 	là các gốc phosphoric acid ). Khi cắt đứt các liên kết cao năng này, sẽ giải phĩng số năng lượng lớn gấp hơn 2 lần so với liên kết este:
Nếu tiếp tục thủy phân liên kết este của AMP để tạo thành adenosine và phosphate vơ cơ, năng lượng tự do được giải phĩng của phản ứng này thấp hơn nhiều. 
Sự chuyển hĩa tương hỗ giữa ATP và ADP cĩ vai trị đặc biệt quan trọng trong quá trình trao đổi năng lượng của hệ thống sống.
Trong đa số trường hợp thường thấy phosphore hoặc sulphure tham gia tạo thành liên kết cao năng (Bảng 8.1).
Bảng 8.1. Một số dạng liên kết cao năng thường gặp
8.3. Quá trình oxy hĩa khử sinh học
Cĩ thể định nghĩa quá trình oxy hĩa khử là quá trình trao đổi điện tử. Sự oxy hĩa là sự tách một hay nhiều điện tử, ngược lại sự khử oxy là sự thu điện tử. Tất cả các chất tham gia vào quá trình oxy hĩa khử ở cơ thể sống đều cĩ khả năng nhường hoặc thu điện tử. 
Đĩ chính là khả năng oxy hĩa khử. Song song với sự oxy hĩa cĩ sự khử oxy vì điện tử được chuyển từ chất bị oxy hĩa sang chất bị khử:
Ví dụ: 
Đại lượng đặc trưng cho khả năng oxy hĩa khử của mỗi chất gọi là thế năng oxy hĩa khử. Cĩ thể tính được thế năng oxy hĩa khử theo cơng thức sau:
Trong đĩ: E’n là thế năng oxy hĩa khử của một chất nhất định trong những điều kiện nhất định. E’0 là thế năng oxy hĩa khử ở các điều kiện tiêu chuẩn ( nồng độ của hai dạng bằng nhau)
R là hằng số khí, T là nhiệt độ tuyệt đối, F là trị số Faraday
Bảng 8.2 trình bày E’0, hiệu điện thế oxy hĩa khử rE’0 và năng lượng tự do rGo của mỗi hệ.
Thế năng oxy hĩa khử cịn dùng để tính năng lượng tự do (DGo) được giải phĩng ra trong qúa trình oxy hĩa khử theo phương trình:
DGo = -nF.DE'o (2)
(Các ký hiệu đã được giải thích ở cơng thức tính thế năng oxy hĩa khử và liên quan đến bảng 8.2 ở trên)
* Tiến trình của sự oxy hĩa sinh học:
Sự phân giải chất dinh dưỡng và giải phĩng năng lượng của tế bào (sự dị hĩa) cĩ thể được chia thành 3 giai đoạn cơ bản:
Ở giai đoạn đầu: các hợp chất cao phân tử bị thủy phân thành các chất đơn giản cĩ phân tử nhỏ hơn: các glucid (tinh bột, glucogen v.v...) thành các monosaccharid (glucose), các protein thành các amino acid, các lipid thành các acid béo.
Ở giai đoạn thứ hai: biến những chất đơn giản thành những chất 2 carbon là acetyl CoA (CH3 - CO~SCoA) (thiếu). Acetyl CoA được coi là sản phẩm thối hĩa của các chất glucid, lipid và protein. Nĩ được hình thành do sự β-oxy hĩa acid béo, do sự oxy hĩa của khoảng một nửa số α-amino acid cũng như do sự oxy hĩa hiếu khí glucose.
Bảng 8.2. Thế năng oxy hĩa tiêu chuẩn của một số hệ thống
Hệ thống oxy hĩa khử
Eo (volt) pH7, 30oC
rE’0 (volt)
rGo (kcal/pH7, 30oC)
Phosphorylhĩa
ADP→ ATP
Điện cực hydro 2H+/ H2
-0,42
NAD+/ NADH + H+
-0,32
FAD/ FADH2
-0,10
+0,22
-10,1
1
Cytochrome b Fe3+/ Fe2+
+0,04
+0,14
-6,4
Cytochrome c1 Fe3+/ Fe2+
+0,23
+0,19
-8,7
1
Cytochrome c Fe3+/ Fe2+
+0,26
+0,03
-1,4
Cytochrome a Fe3+/ Fe2+
+0,29
+0,03
-1,4
Cytochrome a3 Fe3+/ Fe2+
+0,55
+0,26
-12,0
1
Điện cực oxy 1/2 O2 / O2-
+0,81
+0,26
-12,0
+1,13
-52,0
3
Ở giai đoạn thứ ba: Acetyl CoA được hình thành ở giai đoạn thứ hai sẽ bị oxy hĩa hồn tồn trong chu trình Szent-Gyưrgyi-Krebs (chu trình citrat) để hình thành CO2, H2O và giải phĩng năng lượng. Phần lớn năng lượng được giải phĩng ra ở giai đoạn thứ ba này (khoảng 2/3)
Trong giai đoạn thứ hai và thứ ba khoảng 30-40% năng lượng hĩa học được biến thành nhiệt, hơn 60% năng lượng này được sử dụng để tổng hợp các hợp chất cao năng.
Trong chu trình citrat, các hydrogen tách ra sẽ được oxy hĩa qua chuỗi hơ hấp để tạo nên năng lượng và H2O. Năng lượng giải phĩng được tích trữ ở các phân tử ATP. Tồn bộ quá trình cĩ thể được minh họa bằng sơ đồ trên hình 8.3.
Hình 8.3. Tiến trình oxy hĩa sinh học
8.4. Chuỗi hơ hấp tế bào và sự phosphoryl hĩa oxy hĩa
8.4.1. Chuỗi hơ hấp tế bào
Chuỗi hơ hấp tế bào là một hệ thống các enzyme xúc tác vận chuyển H+ và eletron từ cơ chất đến phân tử oxygen để tạo H2O. Trong tế bào, oxygen là chất oxy hĩa vạn năng, cịn các phân tử hữu cơ khác nhau đĩng vai trị chất cho điện tử. Ở đây, điện tử và ion hydrogen của phân tử cơ chất khơng chuyển trực tiếp cho oxygen khơng khí mà được chuyển dần qua một chuỗi phức tạp nhiều mắt xích, bao gồm các hệ enzyme oxy hĩa khử, cĩ thế năng oxy hĩa khử nằm trong khoảng giữa thế năng oxy hĩa khử của cơ chất và của oxygen. Các hệ enzyme này được sắp đặt theo một trật tự tăng dần thế năng oxy hĩa khử tạo thành một chuỗi, gọi là chuỗi hơ hấp hay chuỗi vận chuyển điện tử của tế bào. Vai trị của chuỗi hơ hấp là oxy hĩa từng bậc hydrogen của cơ chất đến H2O.
Cơ chế hoạt động của chuỗi hơ hấp tế bào cĩ thể tĩm lược như sau:
Chất cho nguyên tử hydrogen là NADH + H+ hoặc trong một số trường hợp là FADH2. Nguyên tử hydrogen sẽ được chuyển tới hệ coenzyme Q (CoQ) thơng qua hệ trung gian flavoprotein chứa sắt và lưu huỳnh. Tiếp theo hai điện tử của nguyên tử hydrogen được tách ra và đi vào hệ thống vận chuyển điện tử theo trình tự các cytochrome b-c1-a-cytochromeoxydase (a3), cuối cùng điện tử được chuyển cho oxygen. Nguyên tử oxygen bị khử (ở trạng thái ion hĩa) sẽ kết hợp với 2H+ (proton) để tạo ra phân tử nước.
Quá trình chuyển hydrogen và điện tử ở trong chuỗi hơ hấp cĩ thể phân thành 4 giai đoạn:
- Giai đoạn 1: Thơng thường hydrogen được tách từ cơ chất bởi dehydrogenase cĩ coenzyme NAD+(hoặc NADP +). Hydrogen của cơ chất gắn vào NAD+, cơ chất từ dạng khử chuyển thành dạng oxy hĩa và NAD+ từ dạng oxy hĩa biến sang dạng khử. Mỗi cơ chất cĩ một dehydrogenase đặc hiệu tương ứng:
AH2 + NAD+ → A + NADH +H+
(Trong đĩ AH2 và A là cơ chất dạng khử và dạng oxy hĩa)
NADH khơng thể tự oxy hĩa bởi oxygen được, tức là khơng thể trực tiếp chuyển hydrogen cho oxygen mà phải chuyển sang cho dehydrogenase khác cĩ coenzyme là FMN hoặc FAD.
- Giai đoạn 2: NADH (hoặc NADPH) bị oxy hĩa bởi dehydrogenase. Enzyme này là một flavoprotein cĩ coenzyme là FMN hoặc FAD. Hai eletron được chuyển từ NADH + H+ tới FMN (hoặc FAD) cho FMNH2 (hoặc FADH2): 
NADH + H+ + FMN→ NAD+ + FMNH2
NADH dehydrogenase cũng chứa sắt, chất này cĩ lẽ giữ vai trị vận chuyển eletron. sắt khơng tham gia vào một nhĩm hem nào. NADH dehydrogenase là một protein chứa sắt khơng thuộc hem.
- Giai đoạn 3: H+ và eletron được chuyển từ FMNH2 tới coenzyme Q là một dẫn xuất quinone, cịn được gọi là ubiquinon (UQ). Coenzyme Q là một chất tác dụng chuyển vận khá linh hoạt eletron giữa flavoprotein và hệ thống cytochrome. Ubiquinon cĩ thể nhận 1 hoặc 2e- và tạo ra semiquinone (UQH-) hoặc ubiquinol (UQH2). Đặc tính này cho phép nĩ làm cầu nối vận chuyển e- từ chất cho 2e- sang chất nhận 1e-. Ngồi ra, vì phức UQ nhỏ và kỵ nước, nên nĩ dễ dàng di chuyển trong lớp lipid đơi của màng ty thể làm con thoi vận chuyển e- giữa các phức vận chuyển e- cồng kềnh khác trong màng ty thể.
- Giai đoạn 4: Các enzyme vận chuyển eletron từ CoQH2 đến oxygen. Đĩ là hệ thống cytochrome, nĩ giữ vai trị trung tâm trong hơ hấp tế bào. Mỗi cytochrome là một protein enzyme vận chuyển electron cĩ chứa nhĩm ngoại hem. Ở các phân tử cytochrome, nguyên tử sắt liên tục đi từ trạng thái sắt hai (Fe2+) - dạng khử tới trạng thái sắt ba (Fe3+) - dạng oxy hĩa trong quá trình chuyển vận eletron. Nhĩm hem chuyển vận một eletron; ngược lại với NADH, flavin và coenzyme Q là những chất chuyển vận hai electron.
Cĩ 5 cytochrome giữa CoQ và O2 trong chuổi chuyển vận electron. Thế năng Oxy hĩa khử của chúng tăng theo thứ tự: cytb, cytc1, cytc, cyta, cyta3. Cấu trúc và tính chất của các Cytochrome này khác nhau. Nhĩm phụ của Cytochrome b, c1, c là protoporphyrin cĩ sắt, thường gọi là hem. Cytochrome a và a3 là những thành phần cuối của chuỗi hơ hấp tế bào, chúng ở dạng một phức chất gọi là Cytochrome oxydase. Electron được chuyển tới phần Cytochrome a của phức chất, rồi tới Cytochrome a3 cĩ chứa đồng (Cu+) dạng khử trong quá trình vận chuyển electron, cĩ lẽ nĩ tham gia xúc tác vận chuyển electron từ hem A của Cytochrome a3 tới oxygen.
Quá trình vận chuyển electron qua hệ thống Cytochrome được tĩm lược như sau:
2e- 	+ 2 cytb Fe3+ 	→	2 cytb Fe2+
2 cytb Fe2+ 	+ 2 cytc1 Fe3+	→	2 cytb Fe3+ 	+ 2 cytc1 Fe2+
2 cytc1 Fe2+ 	+ 2 cytc Fe3+	→	2 cytc1 Fe3+ 	+ 2 cytc Fe2+
2 cytc Fe2+ 	+ 2 cyta Fe3+	→	2 cytc Fe3+ 	+ 2 cyta Fe2+
2 cyta Fe2+ 	+ 2 cyta3 Fe3+	→	2 cyta Fe3+ 	+ 2 cyta3 Fe2+
2 cyta3 Fe3+ 	+ 1/2 O2	→	2 cyta3 Fe3+ 	+ 1/2 O2-
Tồn bộ chuỗi hơ hấp tế bào từ cơ chất dạng khử AH2 tới oxygen phân tử qua NAD, flavoprotein, coenzyme Q, hệ thống Cytochrome được trình bày ở hình 8.4.
Hình 8.4. Chuỗi hơ hấp tế bào
Kết quả của chuỗi hơ hấp tế bào thơng thường là H2O, nhưng vẫn cĩ trường hợp tạo thành gốc superoxyd (Oˉ2) và hydrogenperoxyd (H2O2). Đây là các chất độc đối với tế bào vì chúng tấn cơng các acid béo khơng no cấu tạo lipid màng tế bào gây sự biến chất của cấu trúc màng. Theo các số liệu thực nghiệm thì vị trí tạo thành O2ˉ chính là vùng CoQ - cytochrome b do quá trình tự oxy hĩa của cibi-semiquinone. Như vậy, thường xuyên cĩ sự rị rỉ 1 điện tử ở trong ty thể và ty thể sử dụng khoảng 1 - 2% số lượng electron vận chuyển đến cytochrome oxydase để tạo thành Oˉ2. 
Superoxyd dismutase chứa Mn (Mn.SOD) cĩ mặt trong matrix chỉ chuyển được khoảng 80% Oˉ2 do sự rị rỉ điện tử thành H2O2. 20% Oˉ2 tạo thành được chuyển vào cytoplasme, ở đây superoxyd dismutase của cytoplasme (SOD) cùng hợp tác với các hệ thống bảo vệ khác sẽ phân hủy tiếp. Cĩ thể biểu thị các quá trình trên như sau:
SOD và C-ase là các enzyme chống oxy hĩa (antioxydant enzymes), bảo vệ tế bào chống lại các gốc tự do độc hại.
Như vậy, quá trình vận chuyển hydrogen đến oxygen tạo ra H2O, thực chất là một quá trình trao đổi electron (cho và nhận) một cách liên tục. Bản chất của nĩ là một quá trình oxy hĩa khử. Vì vậy, người ta gọi hơ hấp tế bào là oxy hĩa khử sinh học. 
Một điều cần lưu ý thêm là: chuỗi hơ hấp tế bào đã trình bày là chuỗi hơ hấp tế bào bình thường, nhưng trong một số trường hợp, chuỗi cĩ thể kéo dài hoặc ngắn hơn phụ thuộc vào thế năng oxy hĩa khử của cơ chất.
Quan niệm hiện đại về hơ hấp tế bào cịn bổ sung thêm nhiều chi tiết của quá trình hơ hấp tế bào kinh điển như đã trình bày. Những dạng di chuyển điện tử và hydrogen cịn phụ thuộc vào trạng thái cơ chất đến các phức hợp khác nhau.
8.4.2. Sự phosphoryl hĩa oxy hĩa
Quá trình tổng hợp ATP là quá trình phosphoryl hĩa:
ADP + H3PO4 → ATP
Đây là quá trình cần năng lượng. Như chúng ta đã biết, mối liên kết cao năng trong ATP chứa năng lượng tự do là 7Kcal/mol nên để tổng hợp được ATP từ ADP theo phản ứng trên cần cung cấp năng lượng tương đương 7Kcal/mol. Nguồn năng lượng cung cấp cho quá trình phosphoryl hĩa rất khác nhau. Sự phosphoryl hĩa quang hĩa là quá trình tổng hợp ATP ở lục lạp thể nhờ năng lượng ánh sáng xảy ra trong quang hợp. Sự phosphoryl hĩa oxy hĩa là quá trình tổng hợp ATP ở ty thể nhờ năng lượng thải ra trong các phản ứng oxy hĩa khử.
Theo quan niệm hiện nay, sự phosphoryl hĩa oxy hĩa là quá trình hình thành ATP bằng cách chuyển electron và proton trong chuỗi hơ hấp tế bào. Sự tạo thành ATP trong chuỗi hơ hấp tế bào được thể hiện ở hình 8.4. Theo phương trình (2) cần cĩ sự chênh lệch thế năng oxy hĩa khử giữa các chất tham gia trong chuỗi hơ hấp tế bào vào khoảng 0,152 volt để tạo thành một phân tử ATP
Trong chuỗi hơ hấp cĩ 3 điểm tương hợp giữa sự hơ hấp với sự phosphoryl hĩa: 1) giữa NADH với flavoprotein; 2) giữa cytochrome b và c1; 3) giữa cytochrome a và cytochrome oxydase (hình 8.4.). Điều đĩ cĩ nghĩa là proton và electron đựoc chuyển từ NADH + H+ tới oxygen tạo được 3 điểm phosphoryl hĩa, cịn proton và electron được chuyển trong chuỗi hơ hấp tế bào từ FADH2 chỉ cĩ 2 điểm phosphoryl hĩa.
Mối tương quan P/O (tỉ số P/O) là số phân tử phosphate vơ cơ đượoc chuyển thành dạng hữu cơ đối với sự tiêu thụ một nguyên tử oxygen. Tỉ số này biểu thị sự tương quan giữa quá trình phosphoryl hĩa và sự oxy hĩa khử tế bào, được gọi là chỉ số .
Như vậy cĩ thể nĩi rằng sự phosphoryl hĩa oxy hĩa qua hệ thống vận chuyển điện tử của chuỗi enzyme hơ hấp là con đường chủ yếu đối với các sinh vật hiếu khí nhằm khai thác năng lượng của các hợp chất hữu cơ một cách hữu hiệu nhất để phục vụ cho các hoạt động sống của mình.
TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
1. Nguyễn Hữu Chấn, 1983. Enzyme và xúc tác Sinh học. Nxb Y học, Hà Nội.
2. Nguyễn Hữu Chấn, Nguyễn Thị Hà, Nguyễn Nghiêm Luật, Hồng Bích Ngọc, Vũ Thị Phương, 2001. Hĩa sinh. Nxb Y học, Hà Nội.
3. Phạm Thị Trân Châu, Trần Thị Áng, 2000. Hĩa sinh học. Nxb Giáo dục, Hà Nội.
4. Lê Dỗn Diên, 1975. Hĩa sinh thực vật. Nxb Nơng nghiệp, Hà Nội
5. Nguyễn Tiến Thắng, Nguyễn Đình Huyên, 1998. Giáo trình sinh hĩa hiện đại. Nxb Giáo dục, Hà Nội
6. Nguyễn Xuân Thắng, Đào Kim Chi, Phạm Quang Tùng, Nguyễn Văn Đồng, 2004. Hĩa sinh học. Nxb Y học, Hà Nội.
7. Lê Ngọc Tú, La Văn Chứ, Phạm Trân Châu, Nguyễn Lân Dũng, 1982. Enzyme vi sinh vật. Nxb KH&KT, Hà Nội.
8. Lê Ngọc Tú (chủ biên), Lê Văn Chứ, Đặng Thị Thu, Phạm Quốc Thăng Nguyễn Thị Thịnh, Bùi Đức Hợi, Lưu Duẫn, Lê Dỗn Diên, 2000. Hĩa sinh Cơng nghiệp, Nxb KH&KT, Hà Nội.
Tài liệu tiếng nước ngồi
1. Farkas G. 1984. Nưvényi anyagcsereélettan. Akadémiai Kiadĩ Budapest.
2. Fehér J. - Verekei A., 1985. Szabad Gyưk Reakciĩk Jeléntősége az orvostudományban. Medicina Kưnyv Kiadĩ Budapest.
3. Karlson. P., 1972. Biokémia. Medicina Kưnyv Kiadĩ Bydapest.
4. Lehninger A. L., 2004. Principle of Biochemistry, 4th Edition. W.H Freeman, 2004.
5. Stryer L., 1981. Biochemistry. W.H.Freeman and company. San Francisco.

File đính kèm:

  • docChuong VIII khai niem ve trao doi chat va nang luong.doc
Đề thi liên quan