Bài giảng môn toán lớp 10 - Chương I: Vectơ
Bạn đang xem nội dung tài liệu Bài giảng môn toán lớp 10 - Chương I: Vectơ, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
CHƯƠNG I VECTƠ I. VECTƠ 1. Các định nghĩa · Vectơ là một đoạn thẳng có hướng. Kí hiệu vectơ có điểm đầu A, điểm cuối B là . · Giá của vectơ là đường thẳng chứa vectơ đó. · Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ, kí hiệu . · Vectơ – không là vectơ có điểm đầu và điểm cuối trùng nhau, kí hiệu . · Hai vectơ đgl cùng phương nếu giá của chúng song song hoặc trùng nhau. · Hai vectơ cùng phương có thể cùng hướng hoặc ngược hướng. · Hai vectơ đgl bằng nhau nếu chúng cùng hướng và có cùng độ dài. Chú ý: + Ta còn sử dụng kí hiệu để biểu diễn vectơ. + Qui ước: Vectơ cùng phương, cùng hướng với mọi vectơ. Mọi vectơ đều bằng nhau. 2. Các phép toán trên vectơ a) Tổng của hai vectơ · Qui tắc ba điểm: Với ba điểm A, B, C tuỳ ý, ta có: . · Qui tắc hình bình hành: Với ABCD là hình bình hành, ta có: . · Tính chất: ; ; b) Hiệu của hai vectơ · Vectơ đối của là vectơ sao cho . Kí hiệu vectơ đối của là . · Vectơ đối của là . · . · Qui tắc ba điểm: Với ba điểm O, A, B tuỳ ý, ta có: . c) Tích của một vectơ với một số · Cho vectơ và số k Î R. là một vectơ được xác định như sau: + cùng hướng với nếu k ³ 0, ngược hướng với nếu k < 0. + . · Tính chất: ; ; Û k = 0 hoặc . · Điều kiện để hai vectơ cùng phương: · Điều kiện ba điểm thẳng hàng: A, B, C thẳng hàng Û $k ¹ 0: . · Biểu thị một vectơ theo hai vectơ không cùng phương: Cho hai vectơ không cùng phương và tuỳ ý. Khi đó $! m, n Î R: . Chú ý: · Hệ thức trung điểm đoạn thẳng: M là trung điểm của đoạn thẳng AB Û Û (O tuỳ ý). · Hệ thức trọng tâm tam giác: G là trọng tâm DABC Û Û (O tuỳ ý). VẤN ĐỀ 1: Khái niệm vectơ Cho tứ giác ABCD. Có thể xác định được bao nhiêu vectơ (khác ) có điểm đầu và điểm cuối là các điểm A, B, C, D ? Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: . Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh: a) . b) Nếu thì ABCD là hình chữ nhật. .Cho DABC đều cạnh a, trực tâm H. Tính độ dài của các vectơ . Cho hình vuông ABCD cạnh a, tâm O. Tính độ dài của các vectơ , , . VẤN ĐỀ 2: Chứng minh đẳng thức vectơ – Phân tích vectơ Để chứng minh một đẳng thức vectơ hoặc phân tích một vectơ theo hai vectơ không cùng phương, ta thường sử dụng: – Qui tắc ba điểm để phân tích các vectơ. – Các hệ thức thường dùng như: hệ thức trung điểm, hệ thức trọng tâm tam giác. – Tính chất của các hình. Cho 6 điểm A, B, C, D, E, F. Chứng minh: a) b) . Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh: a) Nếu thì b) . c) Gọi G là trung điểm của IJ. Chứng minh: . d) Gọi P, Q lần lượt là trung điểm của AC và BD; M, N lần lượt là trung điểm của AD và BC . Chứng minh các đoạn thẳng IJ, PQ, MN có chung trung điểm. Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của BC và CD. Chứng minh: . Cho tam giác ABC, có AM là trung tuyến. I là trung điểm của AM. a) Chứng minh: . b) Với điểm O bất kỳ, chứng minh: . Cho hai tam giác ABC và A¢B¢C¢ lần lượt có các trọng tâm là G và G¢. a) Chứng minh . b) Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng trọng tâm. Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh: . Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho . K là trung điểm của MN. Chứng minh: a) b) . Cho hình thang OABC. M, N lần lượt là trung điểm của OB và OC. Chứng minh rằng: a) b) c) . Cho hình bình hành ABCD, đặt . Gọi I là trung điểm của CD, G là trọng tâm của tam giác BCI. Phân tích các vectơ theo . Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI=3BI. Gọi F là điểm trên cạnh BC kéo dài sao cho 5FB=2FC. a, Tính theo b, Gọi G là trọng tâm tam giác ABC. Tính theo và Cho DABC có trọng tâm G. Gọi H là điểm đối xứng của G qua B. a) Chứng minh: . b) Đặt . Tính theo . VẤN ĐỀ 3: Xác định một điểm thoả mãn đẳng thức vectơ Để xác định một điểm M ta cần phải chỉ rõ vị trí của điểm đó đối với hình vẽ. Thông thường ta biến đổi đẳng thức vectơ đã cho về dạng , trong đó O và đã được xác định. Ta thường sử dụng các tính chất về: – Điểm chia đoạn thẳng theo tỉ số k. – Hình bình hành. – Trung điểm của đoạn thẳng. – Trọng tâm tam giác, Cho DABC . Hãy xác định điểm M thoả mãn điều kiện: . Cho đoạn thẳng AB có trung điểm I . M là điểm tuỳ ý không nằm trên đường thẳng AB . Trên MI kéo dài, lấy 1 điểm N sao cho IN = MI. a) Chứng minh: . b) Tìm các điểm D, C sao cho: . Cho hình bình hành ABCD. a) Chứng minh rằng: . b) Xác định điểm M thoả mãn điều kiện: . Cho tứ giác ABCD . Gọi M, N lần lượt là trung điểm của AD, BC. a) Chứng minh: . b) Xác định điểm O sao cho: . Cho DABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau: a) b) c) d) . . Cho hình bình hành ABCD có tâm O. Hãy xác định các điểm I, F, K thoả các đẳng thức sau: a) b) c) . VẤN ĐỀ 4: Chứng minh ba điểm thẳng hàng – Hai điểm trùng nhau · Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh ba điểm đó thoả mãn đẳng thức , với k ¹ 0. · Để chứng minh hai điểm M, N trùng nhau ta chứng minh chúng thoả mãn đẳng thức , với O là một điểm nào đó hoặc . Cho bốn điểm O, A, B, C sao cho : . Chứng tỏ rằng A, B, C thẳng hàng. Cho DABC với I, J, K lần lượt được xác định bởi: , , . a) Tính . b) Chứng minh ba điểm I, J, K thẳng hàng (HD: J là trọng tâm DAIB) Bài 3. Cho tam giác ABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho , , . a) Tính theo . b) Chứng minh ba điểm M, N, P thẳng hàng. Bài 4. Cho hình bình hành ABCD. Trên BC lấy điểm H, trên BD lấy điểm K sao cho: . Chứng minh: A, K, H thẳng hàng. Bài 5. Cho hình bình hành ABCD. Trên các tia AD, AB lần lượt lấy các điểm F, E sao cho AD = AF, AB = AE. Chứng minh: a) Ba điểm F, C, E thẳng hàng. b) Các tứ giác BDFC, DBEC là hình bình hành. Bài 6. Cho tam giác ABC. Hai điểm I,J được xác định bởi , .Chứng minh ba điểm I,J,B thẳng hàng Bài 7. Cho tam giác ABC, A¢ là điểm đối xứng của A qua B, B¢ là điểm đối xứng của B qua C, C¢ là điểm đối xứng của C qua A. Chứng minh các tam giác ABC và A¢B¢C¢ có chung trọng tâm. Bài 8. Cho DABC. Gọi A¢, B¢, C¢ là các điểm định bởi: , , . Chứng minh các tam giác ABC và A¢B¢C¢ có cùng trọng tâm. Bài 9. Trên các cạnh AB, BC, CA của DABC lấy các điểm A¢, B¢, C¢ sao cho: Chứng minh các tam giác ABC và A¢B¢C¢ có chung trọng tâm. VẤN ĐỀ 5: Tập hợp điểm thoả mãn đẳng thức vectơ Để tìm tập hợp điểm M thoả mãn một đẳng thức vectơ ta biến đổi đẳng thức vectơ đó để đưa về các tập hợp điểm cơ bản đã biết. Chẳng hạn: – Tập hợp các điểm cách đều hai đầu mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó. – Tập hợp các điểm cách một điểm cố định một khoảng không đổi đường tròn có tâm là điểm cố định và bán kính là khoảng không đổi. Cho 2 điểm cố định A, B. Tìm tập hợp các điểm M sao cho: a) b) c, . Cho DABC. a) Xác định điểm I sao cho: . b) Tìm tập hợp các điểm H sao cho: . c) Tìm tập hợp các điểm K sao cho: Cho DABC. a) Xác định điểm I sao cho: . b) Xác định điểm D sao cho: . c) Chứng minh 3 điểm A, I, D thẳng hàng. d) Tìm tập hợp các điểm M sao cho: . II. TOẠ ĐỘ 1. Trục toạ độ · Trục toạ độ (trục) là một đường thẳng trên đó đã xác định một điểm gốc O và một vectơ đơn vị . Kí hiệu . · Toạ độ của vectơ trên trục: . · Toạ độ của điểm trên trục: . · Độ dài đại số của vectơ trên trục: . Chú ý: + Nếu thì . Nếu thì . + Nếu A(a), B(b) thì . + Hệ thức Sa–lơ: Với A, B, C tuỳ ý trên trục, ta có: . 2. Hệ trục toạ độ · Hệ gồm hai trục toạ độ Ox, Oy vuông góc với nhau. Vectơ đơn vị trên Ox, Oy lần lượt là . O là gốc toạ độ, Ox là trục hoành, Oy là trục tung. · Toạ độ của vectơ đối với hệ trục toạ độ: . · Toạ độ của điểm đối với hệ trục toạ độ: . · Tính chất: Cho , : + + + + cùng phương với Û $k Î R: . Û (nếu x ¹ 0, y ¹ 0). + . + Toạ độ trung điểm I của đoạn thẳng AB: . + Toạ độ trọng tâm G của tam giác ABC: . + Toạ độ điểm M chia đoạn AB theo tỉ số k ¹ 1: . ( M chia đoạn AB theo tỉ số k Û ). VẤN ĐỀ 1: Toạ độ trên trục Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -2 và 5. a) Tìm tọa độ của . b) Tìm tọa độ trung điểm I của đoạn thẳng AB. c) Tìm tọa độ của điểm M sao cho . d) Tìm tọa độ điểm N sao cho . Trên trục x'Ox cho 4 điểm A(-2), B(4), C(1), D(6). a) Chứng minh rằng: . b) Gọi I là trung điểm của AB. Chứng minh: . c) Gọi J là trung điểm của CD. Chứng minh: . Trên trục x'Ox cho 4 điểm A, B, C, D tuỳ ý. a) Chứng minh: . b) Gọi I, J, K, L lần lượt là trung điểm của các đoạn AC, BD, AB, CD. Chứng minh rằng các đoạn IJ và KL có chung trung điểm. VẤN ĐỀ 2: Toạ độ trên hệ trục Viết tọa độ của các vectơ sau: a) . b) . Viết dưới dạng khi biết toạ độ của vectơ là: a) . b) . Cho . Tìm toạ độ của các vectơ sau: a) . b) . Cho . a) Tìm toạ độ của vectơ . b) Tìm 2 số m, n sao cho: . c) Biểu diễn vectơ . Cho hai điểm . a) Tìm toạ độ điểm C sao cho: . b) Tìm điểm D đối xứng của A qua C. c) Tìm điểm M chia đoạn AB theo tỉ số k = –3. Cho ba điểm A(–1; 1), B(1; 3), C(–2; 0). a) Chứng minh ba điểm A, B, C thẳng hàng. b) Tìm các tỉ số mà điểm A chia đoạn BC, điểm B chia đoạn AC, điểm C chia đoạn AB. Cho ba điểm A(1; -2), B(0; 4), C(3; 2). a) Tìm toạ độ các vectơ . b) Tìm tọa độ trung điểm I của đoạn AB. c) Tìm tọa độ điểm M sao cho: . d) Tìm tọa độ điểm N sao cho: . Cho ba điểm A(1; –2), B(2; 3), C(–1; –2). a) Tìm toạ độ điểm D đối xứng của A qua C. b) Tìm toạ độ điểm E là đỉnh thứ tư của hình bình hành có 3 đỉnh là A, B, C. c) Tìm toạ độ trọng tâm G của tam giác ABC. BÀI TẬP ÔN CHƯƠNG I Cho tam giác ABC với trực tâm H, B¢ là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác. Hãy xét quan hệ giữa các vectơ . Cho DABC. Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng: a) c) c) . Cho DABC có trọng tâm G. Gọi H là điểm đối xứng của B qua G. a) Chứng minh: và . b) Gọi M là trung điểm của BC. Chứng minh: . Cho bốn điểm A, B, C, D. Gọi I, J lần lượt là trung điểm của AB và CD. a) Chứng minh: . b) Gọi G là trung điểm của IJ. Chứng minh: . c) Gọi P, Q là trung điểm của các đoạn thẳng AC và BD; M, N là trung điểm của các đoạn thẳng AD và BC. Chứng minh rằng ba đoạn thẳng IJ, PQ và MN có chung trung điểm. Cho tam giác ABC và một điểm M tuỳ ý. a) Hãy xác định các điểm D, E, F sao cho , , . Chứng minh các điểm D, E, F không phụ thuộc vào vị trí của điểm M. b) So sánh hai tổng vectơ: và . Cho DABC với trung tuyến AM. Gọi I là trung điểm AM. a) Chứng minh: . b) Với điểm O bất kì, chứng minh: . Cho hình bình hành ABCD tâm O. Gọi I là trung điểm BC và G là trọng tâm DABC. Chứng minh: a) . b) . Cho hình bình hành ABCD tâm O. Gọi I và J là trung điểm của BC, CD. a) Chứng minh: b) Chứng minh: . c) Tìm điểm M thoả mãn: . Cho tam giác ABC có trọng tâm G. Gọi D và E là các điểm xác định bởi , . a) Tính . b) Chứng minh ba điểm D, E, G thẳng hàng. Cho DABC. Gọi D là điểm xác định bởi và M là trung điểm đoạn BD. a) Tính theo . b) AM cắt BC tại I. Tính và . Cho DABC. Tìm tập hợp các điểm M thỏa điều kiện: a) b) c) d) e) Bài 12.Cho lục giác đều ABCDEF. Phân tích các vectơ theo các vectơ . Bài 13. Cho hình thang OABC, AM là trung tuyến của tam giác ABC. Hãy phân tích vectơ theo các vectơ . Bài 14. Cho DABC. Trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho . a) Tính theo b) Chứng minh: M, N, P thẳng hàng. Bài 15. Cho DABC. Gọi A1, B1, C1 lần lượt là trung điểm của BC, CA, AB. a) Chứng minh: b) Đặt . Tính theo . Bài 16. Cho DABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI. Gọi F là điểm trên cạnh BC kéo dài sao cho 5FB = 2FC. a) Tính . b) Gọi G là trọng tâm DABC. Tính . Bài 17. Cho DABC có A(4; 3) , B(-1; 2) , C(3; -2). a) Tìm tọa độ trọng tâm G của DABC. b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Bài 18. Cho A(2; 3), B(-1; -1), C(6; 0). a) Chứng minh ba điểm A, B, C không thẳng hàng. b) Tìm tọa độ trọng tâm G của DABC. c) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. Bài 19. Cho A(0; 2) , B(6; 4) , C(1; -1). Tìm toạ độ các điểm M, N, P sao cho: a) Tam giác ABC nhận các điểm M, N, P làm trung điểm của các cạnh. b) Tam giác MNP nhận các điểm A, B, C làm trung điểm của các cạnh. Bài 20. Cho 4 điểm A, B, C, D. Gọi M và N lần lượt là trung điểm của AB, CD, O là trung điểm của MN. Chứng minh rằng với điểm S bất kì, ta có: . Bài 21. Cho tam giác ABC và điểm M tùy ý. a) Hãy xác định các điểm D, E, F sao cho , , . Chứng minh D, E, F không phụ thuộc vào vị trí của điểm M. b) So sánh 2 véc tơ . Bài 22. Cho tứ giác ABCD. a) Hãy xác định vị trí của điểm G sao cho: (G đgl trọng tâm của tứ giác ABCD). b) Chứng minh rằng với điểm O tuỳ ý, ta có: . Bài 23. Cho G là trọng tâm của tứ giác ABCD. A¢, B¢, C¢, D¢ lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh: a) G là điểm chung của các đoạn thẳng AA¢, BB¢, CC¢, DD¢. b) G cũng là trọng tâm của của tứ giác A¢B¢C¢D¢. Bài 24. Cho tứ giác ABCD. Trong mỗi trường hợp sau đây hãy xác định điểm I và số k sao cho các vectơ đều bằng với mọi điểm M: a) b) c) d) . Bài 25. Cho DABC. Hai điểm I, J được xác định bởi: , . Chứng minh 3 điểm I, J, B thẳng hàng. Bài 26. Cho DABC. Hai điểm M, N được xác định bởi: , . Chứng minh 3 điểm M, G, N thẳng hàng, với G là trọng tâm của DABC. Bài 27. Cho DABC. Lấy các điểm M N, P: a) Tính . b) Chứng minh 3 điểm M, N, P thẳng hàng. Bài 28. Cho tam giác ABC có trọng tâm G. Các điểm M, N thoả mãn: , . Chứng minh đường thẳng MN đi qua trọng tâm G của DABC. Bài 29. Cho tam giác ABC. Gọi I là trung điểm của BC, D và E là hai điểm sao cho . a) Chứng minh . b) Tính . Suy ra ba điểm A, I, S thẳng hàng. Bài 30. Cho tam giác ABC. Các điểm M, N được xác định bởi các hệ thức , . a) Xác định x để A, M, N thẳng hàng. b) Xác định x để đường thẳng MN đi trung điểm I của BC. Tính . Bài 31. Cho ba điểm cố định A, B, C và ba số thực a, b, c sao cho . a) Chứng minh rằng có một và chỉ một điểm G thoả mãn . b) Gọi M, P là hai điểm di động sao cho . Chứng minh ba điểm G, M, P thẳng hàng. Bài 32. Cho tam giác ABC. Các điểm M, N thoả mãn . a) Tìm điểm I thoả mãn . b) Chứng minh đường thẳng MN luôn đi qua một điểm cố định. Bài 33. Cho tam giác ABC. Các điểm M, N thoả mãn . a) Tìm điểm I sao cho . b) Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định. c) Gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định. Bài 34 Cho DABC. Hãy xác định các điểm I, J, K, L thoả các đẳng thức sau: a) b) c) d) . Bài 35. Cho DABC. Hãy xác định các điểm I, F, K, L thoả các đẳng thức sau: a) b) c) d) Bài 36. Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là -3 và 1. a) Tìm tọa độ điểm M sao cho . b) Tìm tọa độ điểm N sao cho . Bài 37. Trên trục x'Ox cho 3 điểm A, B, C có tọa độ lần lượt là a, b, c. a) Tìm tọa độ trung điểm I của AB. b) Tìm tọa độ điểm M sao cho . c) Tìm tọa độ điểm N sao cho .
File đính kèm:
- chuyen de vecto.docx