Bài giảng môn toán lớp 6 - Đề số 3 (Đề thi của tỉnh Hải Dương năm học 1999 – 2000)
Bạn đang xem nội dung tài liệu Bài giảng môn toán lớp 6 - Đề số 3 (Đề thi của tỉnh Hải Dương năm học 1999 – 2000), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề số 3 (Đề thi của tỉnh Hải Dương năm học 1999 – 2000) Câu I 1) Viết phương trình đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đường thẳng trên với trục tung và trục hoành. Câu II Cho phương trình: x2 – 2mx + 2m – 5 = 0. 1) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m. 2) Tìm điều kiện của m để phương trình có hai nghiệm trái dấu. 3) Gọi hai nghiệm của phương trình là x1 và x2, tìm các giá trị của m để: x12(1 – x22) + x22(1 – x12) = -8. Câu III Cho tam giác đều ABC, trên cạnh BC lấy điểm E, qua E kẻ các đường thẳng song song với AB và AC chúng cắt AC tại P và cắt AB tại Q. 1) Chứng minh BP = CQ. 2) Chứng minh tứ giác ACEQ là tứ giác nội tiếp. Xác định vị trí của E trên cạnh BC để đoạn PQ ngắn nhất. 3) Gọi H là một điểm nằm trong tam giác ABC sao cho HB2 = HA2 + HC2. Tính góc AHC.
File đính kèm:
- on thi lop 10.doc