Bài giảng Phần đại số

doc15 trang | Chia sẻ: haohao | Lượt xem: 1304 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài giảng Phần đại số, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 
* PH ẦN ĐẠI SỐ
A-LÝ THUYẾT:

I. PHẦN THỐNG KÊ
1. Thu thập số liệu thống kê, tần số:
Các số liệu thu thập được khi điều tra về một dấu hiệu gọi là số liệu thống kê. Mỗi số liệu là một giá trị của dấu hiệu.
Số tất cả các giá trị (không nhất thiết khác nhau) của dấu hiệu bằng số cácđơn vị điều tra.
Số lần xuất hiện của một giá trị trong dãy giá trị của dấu hiệu là tần số của giá trị đó.
2. Bảng tần số các “giá trị” của dấu hiệu:

	Dấu hiệu(x)
 X1
X2
 X3

Tần số (n)
	n1
 n2
	n3
	N

Dấu hiệu (x)
Tần số (n)
x
x
.
.
.

x
n
n
.
.
.

n

N
3. Biểu đồ: Có thể biểu diễn số liệu bằng biểu đồ.
4. Số trung bình cộng của dấu hiệu: Kí hiệu 
Tính bằng công thức: 
Trong đó: x, x xlà các gia tri khac nhau cua dau hiệu.
	n, n nlà các tần số tương ứng.
	N là số các giá trị.
Tính bằng cách lập bảng:
Dấu hiệu (x)
Tần số (n)
Các tích (x.n)

x
x
.
.
x
n
n
.
.
n
x n
xn
.
.
xn








N = n + n +...+ n


Ý nghĩa: Số trung bình cộng thường được dùng làm “đại diện” cho dấu hiệu.
Mốt của dấu hiệu: Giá tri có tần số lớn nhất trong bảng “tần số” . Kí hiệu: M

II. PHẦN BIỂU THỨC ĐẠI SỐ

 	1.Biểu thức đại số: Biểu thức mà trong đó ngoài các số, kí hiệu phép tính cộng, trừ, nhân, chia, nâng lên lũy thừa, còn có cả các chữ đại diện cho số(gọi là biến số) là biểu thức đại số.
 2.Giá trị của một biểu thức đại số: Tính giá trị của biểu thức đại số tại những giá trị cho trước của biến, ta thay các giá trị cho trước đó vào biểu thức rồi thực hiện phép tính.
 	3.Đơn thức:
Đơn thức là biểu thức đại số chỉ gồm một số hoặc một biến hoặc một tích giữa các số và các biến. Số 0 là đơn thức không.
Bậc của đơn thức co hệ số khác 0 là tổng số mũ của tất cả các biến có trong đơn thức đó.
Hai đơn thức đồng dạng là hai đơn thức co hệ số khác 0và có cùng phần biến. Cộng (trừ) các đơn thức đồng dạng ta cộng (trừ) các hệ số với nhau và giiữ nguyên phần biến.
Nhân hai đơn thức ta nhân các hệ số với nhau và nhân các phần biến với nhau và dùng lũy thừa để ghi bậc của mỗi biến.
 4 Đa thức:
 Đa thức là tổng của những đơn thức.
Bậc của đa thức là bậc cao nhất của hạng tử trong dạng thu gọn của đa thức. Đa thức không là đa thức không có bậc.
Đa thức một biến là tổng của những đơn thức của cùng một biến. Mỗi số được coi là một đa thức một biến.
Ta có thể cộng, trừ các biểu thức số và tương tự ta có thể thực hiện các phép toán cộng, trừ đa thức. Đối với đa thức một biến ta có thể sắp xếp các hạng tử cùng lũy thừa giảm (hoặc tăng) của biến rồi đặt phép tính theo cột dọc tương tự như cộng, trừ các số.
Nếu tại x = a mà đa thức P(x) = 0 ta nói a (hoặc x = a) là nghiệm của đa thức đó.
B. CÁC DẠNG BÀI TẬP
Dạng 1: Thu gọn biểu thức đại số:
Thu gọn đơn thức, tìm bậc, hệ số.
Phương pháp:
Bước 1: dùng qui tắc nhân đơn thức để thu gọn.
Bước 2: xác định hệ số, bậc của đơn thức đã thu gọn.
Bài tập áp dụng : Thu gọn đơn thức, tìm bậc, hệ số.

	A= ; 	B=
Thu gọn đa thưc, tìm bậc, hệ số cao nhất.
Phương pháp:
Bước 1: nhóm các hạng tử đồng dạng, tính cộng, trừ các hạng tử đòng dạng.
Bước 2: xác định hệ số cao nhất, bậc của đa thức đã thu gọn.
Bài tập áp dụng : Thu gọn đa thưc, tìm bậc, hệ số cao nhất.


Dạng 2: Tính giá trị biểu thức đại số :
Phương pháp :
	Bước 1: Thu gọn các biểu thức đại số.
	Bước 2: Thay giá trị cho trước của biến vào biểu thức đại số.
	Bước 3: Tính giá trị biểu thức số.
Bài tập áp dụng :
Bài 1 : Tính giá trị biểu thức
a. A = 3x3 y + 6x2y2 + 3xy3 tại 
b. B = x2 y2 + xy + x3 + y3 tại x = –1; y = 3
Bài 2 : Cho đa thức
P(x) = x4 + 2x2 + 1; 
Q(x) = x4 + 4x3 + 2x2 – 4x + 1; 
Tính : P(–1); P(); Q(–2); Q(1); 
Dạng 3 : Cộng, trừ đa thức nhiều biến
Phương pháp :
Bước 1: viết phép tính cộng, trừ các đa thức.
Bước 2: áp dung qui tắc bỏ dấu ngoặc.
Bước 3: thu gọn các hạng tử đồng dạng ( cộng hay trừ các hạng tử đồng dạng)
Bài tập áp dụng:
Bài 1 : Cho đa thức :
	A = 4x2 – 5xy + 3y2; 	B = 3x2 + 2xy - y2
Tính A + B; A – B
Bài 2 : Tìm đa thức M,N biết :
M + (5x2 – 2xy) = 6x2 + 9xy – y2	
(3xy – 4y2)- N= x2 – 7xy + 8y2
Dạng 4: Cộng trừ đa thức một biến:
Phương pháp:
Bước 1: thu gọn các đơn thức và sắp xếp theo lũy thừa giảm dần của biến.
Bước 2: viết các đa thức sao cho các hạng tử đồng dạng thẳng cột với nhau.
Bước 3: thực hiện phép tính cộng hoặc trừ các hạng tử đồng dạng cùng cột.
Chú ý: A(x) - B(x)=A(x) +[-B(x)]
Bài tập áp dụng :
Cho đa thức 
A(x) = 3x4 – 3/4x3 + 2x2 – 3	
B(x) = 8x4 + 1/5x3 – 9x + 2/5	
Tính : A(x) + B(x); 	A(x) - B(x); 	B(x) - A(x);
Dạng 5 : Tìm nghiệm của đa thức 1 biến
1. Kiểm tra 1 số cho trước có là nghiệm của đa thức một biến không
Phương pháp :
	Bước 1: Tính giá trị của đa thức tại giá trị của biến cho trước đó.
	Bước 2: Nếu giá trị của đa thức bằng 0 thì giá trị của biến đó là nghiệm của đa thức.
2. Tìm nghiệm của đa thức một biến
Phương pháp :
Bước 1: Cho đa thức bằng 0.
Bước 2: Giải bài toán tìm x.
Bước 3: Giá trị x vừa tìm được là nghiệm của đa thức.
Chú ý :
– Nếu A(x).B(x) = 0 => A(x) = 0 hoặc B(x) = 0
– Nếu đa thức P(x) = ax2 + bx + c có a + b + c = 0 thì ta kết luận đa thức có 1 nghiệm là x = 1, nghiệm còn lại x2 = c/a.
– Nếu đa thức P(x) = ax2 + bx + c có a – b + c = 0 thì ta kết luận đa thức có 1 nghiệm là x = –1, nghiệm còn lại x2 = -c/a.
Bài tập áp dụng :
Bài 1 : Cho đa thức f(x) = x4 + 2x3 – 2x2 – 6x + 5
Trong các số sau : 1; –1; 2; –2 số nào là nghiệm của đa thức f(x)
Bài 2 : Tìm nghiệm của các đa thức sau.
	f(x) = 3x – 6; 	h(x) = –5x + 30	g(x)=(x-3)(16-4x)
k(x)=x2-81	m(x) = x2 +7x -8	n(x)= 5x2+9x+4

Dạng 6 : Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a 
Phương pháp :
	Bước 1: Thay giá trị x = x0 vào đa thức.
	Bước 2: Cho biểu thức số đó bằng a.
	Bước 3: Tính được hệ số chưa biết.
Bài tập áp dụng :
Bài 1 : Cho đa thức P(x) = mx – 3. Xác định m biết rằng P(–1) = 2
Bài 2 : Cho đa thức Q(x) = -2x2 +mx -7m+3. Xác định m biết rằng Q(x) có nghiệm là -1.
Dạng 7: Toán về thống kê
Bài 1 : Theo dõi điểm kiểm tra miệng môn Toán của học sinh lớp 7A tại một trường THCS sau một năm học, người ta lập được bảng sau:
Điểm số
0
2
5
6
7
8
9
10


Tần số
1
5
2
6
9
10
4
3
N=40

a) Dấu hiệu điều tra là gì ? Tìm mốt của dấu hiệu ?
b) Tính điểm trung bình kiểm tra miệng của học sinh lớp 7A.
c) Nhận xét về kết quả kiểm tra miệng môn Toán của các bạn lớp 7A.
Bài 2 : Điểm kiểm tra học kì II môn Toán của lớp 7C được thống kê như sau:
Điểm
1
2
3
4
5
6
7
8
9
10

Tần số
1
1
2
3
9
8
7
5
2
2
N = 40
a) Biểu diễn bằng biểu đồ đoạn thẳng (trục tung biểu diễn tần số; trục hoành biểu diễn điểm số)
b) Tìm số trung bình cộng.
C. MỘT SỐ BÀI TẬP ÁP DỤNG
 
Bài 1 : Cho đơn thức : A = (-3xy2)(x3y)(-x2y)2	B = (1/2x2y3)2(-2x3y)
a. Thu gọn đơn thức A và B.
b. Tìm hệ số và phần biến của đơn thức A và B.
c. Tìm bậc của đơn thức A và B.
d. Tình giá trị của đơn thức A và B tại x = 1 và y = -1.
Bài 2 : Cho đơn thức :
A = (3/5xy2)(-5/2x3y4)2	B = (1/2x7y3)2 (-2x3y)3
a. Thu gọn đơn thức A và B.
b. Tính giá trị của A và B tại tại x = 1 và y = -1.
c. Tìm bậc của đơn thức.
d. A và B có là hai đơn thức đồng dạng không ?

Bài 3 : Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1
g(x) = x3 + x - 1
h(x) = 2x2 - 1
a) Tính: f(x) - g(x) + h(x)
b) Tìm x sao cho f(x) - g(x) + h(x) = 0
Bài 4 : Cho P(x) = x3 - 2x + 1 ; Q(x) = 2x2 – 2x3 + x - 5. 
 Tính a) P(x) + Q(x); b) P(x)-Q(x)
Bài 5 : Cho hai đa thức:
A(x) = –4x5 – x3 + 4x2 + 5x + 9 + 4x5 – 6x2 – 2
B(x) = –3x4 – 2x3 + 10x2 – 8x + 5x3 – 7 – 2x3 + 8x
a) Thu gọn mỗi đa thức trên rồi sắp xếp chúng theo lũy thừa giảm dần của biến. b) Tính P(x) = A(x) + B(x) và Q(x) = A(x) – B(x)
c) Chứng tỏ x = –1 là nghiệm của đa thức P(x).
Bài 6 : Cho f(x) = x3 − 2x + 1, g(x) = 2x2 − x3 + x −3 
 a) Tính f(x) + g(x) ; f(x) − g(x). b) Tính f(x) +g(x) tại x = – 1; x =-2 
Bài 7 : Cho đa thức
 M = x2 + 5x4 − 3x3 + x2 + 4x4 + 3x3 − x + 5
 N = x − 5x3 − 2x2 − 8x4 + 4 x3 − x + 5 
 a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
 b. Tính M+N; M- N
Bài 8 :. Cho đa thức A = −2 xy 2 + 3xy + 5xy 2 + 5xy + 1
 a. Thu gọn đa thức A. b. Tính giá trị của A tại x= ;y=-1
 Bài 2 : Cho hai đa thức P ( x) = 2x4 − 3x2 + x -2/3 và Q( x) = x4 − x3 + x2 +5/3 
 a. Tính M (x) = P( x) + Q( x) b. Tính N ( x) = P( x) − Q( x) và tìm bậc của đa thức N ( x) 
Bài 9 : Cho hai đa thức: f(x) = 9 – x5 + 4x - 2x3 + x2 – 7x4
 g(x) = x5 – 9 + 2x2 + 7x4 + 2x3 - 3x
 a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến
 b) Tính tổng h(x) = f(x) + g(x). c) Tìm nghiệm của đa thức h(x).
Bài 10 : Cho P(x) = 2x3 – 2x – 5 ; Q(x) = –x3 + x2 + 1 – x.Tính:
 a. P(x) +Q(x); b. P(x) − Q(x).
Bài 11 : Cho đa thức f(x) = – 3x2 + x – 1 + x4 – x3– x2 + 3x4
 g(x) = x4 + x2 – x3 + x – 5 + 5x3 – x2
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến. 
b) Tính: f(x) – g(x); f(x) + g(x) c) Tính g(x) tại x = –1.
C Bài 12 : Cho đa thức P(x) = 2x3 + 2x – 3x2 + 1; Q(x) = 2x2 + 3x3 – x – 5
 Tính: a. P(x) + Q(x) b. P(x) – Q(x)
Bài 13 : Cho đa thức P = 5x2 – 7y2 + y – 1; Q = x2 – 2y2
a) Tìm đa thức M = P – Q b) Tính giá trị của M tại x=1/2 và y=-1/5
Bài 14 : Tìm đa thức A biết A + (3x2 y − 2xy3 ) = 2x2 y − 4xy3
Bài 15 : Cho P( x) = x4 − 5x + 2 x2 + 1 và Q( x) = 5x +3/2x2 + 5 +1/2x2 + x4 .
 a)Tìm M(x)=P(x)+Q(x) b. Chứng tỏ M(x) không có nghiệm 
Bài 16 : Cho đa thức P(x)=5x-
 a. Tính P(-1);P() b. Tìm nghiệm của đa thức trên
Bài 17 : Tìm nghiệm của đa thức 
a) 4x + 9 
b) -5x+6
c) x2 – 1.
d) x2 – 9.
e) x2 – x.
f) x2 – 2x.
g) x2 – 3x.
h) 3x2 – 4x


Bài 18 : Tìm nghiệm của các đa thức sau :
a. f(x) = x – 1 	b. f(x) = 3x – 5 .
c. f(x) = x2 + 2x	d. f(x) = x2 +9x
e. f(x) = (2x – 1)(3x + 5)	f. f(x) = x2 + 2 
g. f(x) = |x – 7|
Bài 19 : Tìm m , biết rằng đa thức :	P(x) = mx2 + 2mx – 3 có nghiệm x = -1
 
Bài 20 : Điểm kiểm tra toán học kỳ I của học sinh lớp 7A được ghi lại như sau:
10 	9 	7 	8 	9 	1 	4 	9
1 	5 	10 	6 	4 	8 	5 	3
5 	6 	8 	10 	3 	7 	10 	6
6 	2 	4 	5 	8 	10 	3 	5
5 	9 	10 	8 	9 	5 	8 	5
a) Dấu hiệu cần tìm ở đây là gì ?
b) Lập bảng tần số và tính số trung bình cộng. c) Tìm mốt của dấu hiệu.
 Bài 21 : Điều tra về tuổi nghề (tính bằng năm) của 20 công nhân trong một phân xxưởng sản xuất ta có bảng số liệu sau
3	5	5	3	5	6	6	5	4	6
5	6	3	6	4	5	6	5	6	5
a. Dấu hiệu ở đây là gì?
b. Lập bảng tần số và tính số trung bình cộng của bảng số liệu trên.
Bài 22 : Điểm kiểm tra toán học kì II của lớp 7B được thống kê như sau:
Điểm	4	5	6	7	8	9	10
Tần số	1	4	15	14	10	5	1

 a) Dựng biểu đồ đoạn thẳng (trục hoành biểu diễn điểm số; trục tung biểu diễn tần số).
 b) Tính số trung bình cộng
Bài 23 : Điểm kiểm tra học kì II môn Toán của lớp 7A được thống kê như sau:
Điểm	1	2	3	4	5	6	7	8	9	10
Tần số	1	1	2	3	9	8	7	5	2	2	N = 40
a) Dấu hiệu ở đây là gì? Tìm mốt của dấu hiệu. b) Tìm số trung bình cộng.
Bài 24 : Thời gian làm một bài tập toán (tính bằng phút) của 30 học sinh được ghi lại nhưsau:
10
5
8
8
9
7
8
9
14
8
5
7
8
10
9
8
10
7
14
8
9
8
9
9
9
9
10
5
5
14
a. Dấu hiệu ở đây là gì?
b. Lập bảng tần số.
c. Tính số trung bình cộng và tìm mốt của dấu hiệu.
 d. Vẽ biểu đồ đoạn thẳng.
Bài 25 : Thời gian làm bài tập (tính bằng phút) của 20 học sinh được ghi lại như sau:
10	5	8	8	9	7	8	9	14	8
5	7	8	10	9	8	10	7	14	8
a. Dấu hiệu ở đây là gì? Lập bảng tần số? Tìm mốt của dấu hiệu?
b. Tính số trung bình cộng?
Bài 26 : Thời gian làm bài tập của các hs lớp 7 tính bằng phút đươc thống kê bởi bảng sau:


4	5	6	7	6	7	6	4

6	7	6	8	5	6	9	10	
5	7	8	8	9	7	8	8	
8	10	9	11	8	9	8	9

4	6	7	7	7	8	5	8	








Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu?
Lập bảng tần số? Tìm mốt của dấu hiệu?Tính số trung bình cộng? 
Vẽ biểu đồ đoạn thẳng?


* PH ẦN HÌNH HỌC
A- LÍ THUYẾT
Nêu các trường hợp bằng nhau của hai tam giác thường, hai tam giác vuông? Vẽ hình, ghi giả thuyết, kết luận?
Nêu định nghĩa, tính chất của tam giác cân, tam giác đều?
Nêu định lý Pytago thuận và đảo, vẽ hình, ghi giả thuyết, kết luận?
Nêu định lý về quan hệ giữa góc và cạnh đối diện trong tam giác, vẽ hình, ghi giả thuyết, kết luận.
Nêu quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu, vẽ hình, ghi giả thuyết, kết luận.
Nêu định lý về bất đẳng thức trong tam giác, vẽ hình, ghi giả thuyết, kết luận.
Nêu tính chất 3 đường trung tuyến trong tam giác, vẽ hình, ghi giả thuyết, kết luận.
Nêu tính chất đường phân giác của một góc, tính chất 3 đường phân giác của tam giác, vẽ hình, ghi giả thuyết, kết luận.
Nêu tính chất đường trung trực của một đoạn thẳng, tính chất 3 đường trung trực của tam giác, vẽ hình, ghi giả thuyết, kết luận.
10. Biết sử dụng com pa, thước thẳng để vẽ đường trung tuyến , đường phân giác, đường trung trực, đường cao.
 B. MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH THƯỜNG DÙNG
Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau:
Cách1: chứng minh hai tam giác bằng nhau.
Cách 2: sử dụng tính chất bắc cầu, cộng trừ theo vế, hai góc bù nhau .v. v. 
Chứng minh tam giác cân: 
Cách1: chứng minh hai cạnh bằng nhau hoặc hai góc bằng nhau. 
Cách 2: chứng minh đường trung tuyến đồng thời là đường cao, phân giác …
Cách 3:chứng minh tam giác có hai đường trung tuyến bằng nhau v.v.
Chứng minh tam giác đều: 
Cách 1: chứng minh 3 cạnh bằng nhau hoặc 3 góc bằng nhau.
Cách 2: chứng minh tam giác cân có 1 góc bằng 600.
Chứng minh tam giác vuông:
Cách 1: Chứng minh tam giác có 1 góc vuông.
Cách 2: Dùng định lý Pytago đảo.
Cách 3: Dùng tính chất: “đường trung tuyến ứng với một cạnh bằng nữa cạnh ấy thì tam giác đó là tam giác vuông”.
Chứng minh tia Oz là phân giác của góc xOy:
Cách 1: Chứng minh góc xOz bằng yOz.
Cách 2: Chứng minh điểm M thuộc tia Oz và cách đều 2 cạnh Ox và Oy.
Chứng minh bất đẳng thức đoạn thẳng, góc. Chứng minh 3 điểm thẳng hàng, 3 đường đồng qui, hai đường thẳng vuông góc v. v. . . (dựa vào các định lý tương ứng).
C- MỘT SỐ BÀI TẬP ÁP DỤNG
Bài 1 : Cho !ABC vuông tại A .Kẻ BD là phân giác của góc B .Kẻ AI ^BD tại I .AI cắt AC tại E.
a. Chứng minh : AB = EB 
b. Chứng minh : !BED vuông 
c. DE cắt AB tại F . chứng minh AE // FC.	
Bài 2 : Cho !ABC cân tại A ,có BD và CE là hai đường trung tuyến cắt nhau tại I .
a. Chứng minh : !IBC cân .
b. Lấy O thuộc tia IC sao cho IO = IE .Gọi K là trung điểm của IA. Chứng minh AO , BD và CK đồng quy.
Bài 3 : Cho !ABC cân tại A ,kẻ tia phân giác của góc BAC cắt BC tại H .Biết AB= 15cm , BC= 18cm.
a. So sánh góc A và góc C
b. Chứng minh rằng :!ABH = !ACH 
c. Vẽ trung tuyến BD của !ABC cắt AH tại G .Chứng rằng G là trọng tâm của !ABC 
d. Tính độ dài AG 
e. Kẻ đường thẳng CG cắt AB ở E , chứng minh rằng : !AEG = !ADG 
Bài 4 : Cho !ABC vuông tại A , trên BC lấy điểm D sao cho BA = BD .Qua D kẻ đường vuông góc với BC cắt AC tại E , qua C kẻ đường vuông góc với BE tại H cắt AB tại F.
a. Chứng minh : !ABE = !DBE
b. Chứng minh : ! BCF cân .
c. Chứng minh : 3 điểm F, D , E thẳng hàng .
d. Trên cạnh CB lấy điểm M sao cho CA = CM .Tính số đo góc DAM 
Bài 5 : Cho !ABC cân tại A .Kẻ đường cao BE .Trên cạnh AB lấy điểm D sao cho AE = AD .Gọi H là giao điểm của BE và CD 
a. Chứng minh : !ABE = !ACD
b. Chứng minh H là trực tâm của !ABC.
c. Gọi M là trung điểm của BC , chứng minh 3 điểm : A, H, M thẳng hàng .
d. Chứng minh BC = 2DM.
Bài 6 : Cho !ABC vuông tại A (AB > AC) .Trên tia đối của tia AC lấy điểm D sao cho AD = AB .Trên cạnh AB lấy điểm E sao cho AC = AE.
a. Chứng minh rằng : !ABC = !ADE
b. Gọi M, N lần lượt là trung điểm của DE và BC .Chứng minh !ADM = !ABN
c. Chứng minh : !AMN vuông cân.
d. Qua E kẻ EF^BC tại F. Chứng minh 3 điểm E, F, D thẳng hàng.
Bài 7 : Cho !ABC cân tại A , kẻ BD ^ AC, kẻ CE ^ AB , BD và CE cắt nhau tại I 
a. Chứng minh rằng : !BDC = !CEB .
b. So sánh : góc IBE và góc ICD 
c. Đường thẳng AI cắt BC tại H , chứng minh AI ^ BC tại H .
Bài 8 : Cho đoạn thẳng BC , gọi I là trung điểm của BC .Trên đường trung trực của đoạn thẳng BC lấy điểm A (A # I).
a. Chứng minh : !AIB = !AIC.
b. Kẻ IH ^ AB , kẻ IK ^ AC 
c. Chứng minh : !AHK cân.
d. Chứng minh : HK // BC.
Bài 9 : Cho !ABC vuông tại A , Biết AB = 6cm , AC = 8cm .
a. Tính BC.
b. Trung trực của BC cắt AC tại D và cắt AB tại F.Chứng minh góc DBC bằng DCB.
c. Trên tia đối tia DB lấy E sao cho DE = DC . Chứng minh !BCE vuông và DF là phân giác góc ADE.
d. Chứng minh : BE ^ FC.
Bài 10 : Cho !ABC cân tại A ,kẻ các trung tuyến BM và CN của !ABC.
a. Chứng minh : !BMC = !CNB .
b. So sánh dóc ANM và góc ABC. Từ đó suy ra NM // BC .
c. BM cắt CN tại G . Chứng minh AG ^ MN.
Bài 11 : Cho !ABC có AB = 9cm , AC = 12cm , BC = 15cm .
a. So sánh các góc trong !ABC 
b. !ABC có dạng đặc biệt nào ? vì sao ?
c. Vẽ trung tuyến AM của !ABC , kẻ MH ^ AC .Trên tia đối tia MH lấy điểm K sao cho : MK = MH.
@ Chứng minh : !MHC = !MKB " BK // AC .
@ BH cắt AM tại G . Chứng minh G là trọng tâm của !ABC.
Bài 12 : Cho !ABC vuông tại A, vẽ trung tuyến AM .Trên tia đối tia MA lấy điểm D sao cho MD = MA .
a. Chứng minh : !MAB = !MDC " !ADC vuông. 
b. Gọi K là trung điểm của AC , chứng minh KD = KB 
c. KD cắt BC tại I , KB cắt AD tại N , chứng minh : !KNI cân .

Bài 13 : Cho góc nhọn xOy. Điểm H nằm trên tia phân giác của góc xOy. Từ
H dựng các đường vuông góc xuống hai cạnh Ox và Oy (A thuộc Ox và B thuộc Oy).
a) Chứng minh tam giác HAB là tam giác cân
 b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH. Chứng minh BC ⊥ Ox.
c) Khi góc xOy bằng 600, chứng minh OA = 2OD.
Bài 14: Cho ∆ABC vuông ở C, có Aˆ = 600 , tia phân giác của góc BAC
cắt BC ở E, kẻ EK vuông góc với AB. (K AB), kẻ BD vuông góc AE (D AE).
Chứng minh a) AK=KB b) AD=BC
Bài 15 : Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K
 a) Chứng minh rBNC= rCMB b)Chứng minh ∆BKC cân tại Kc) Chứng minh BC < 4.KM
Bài 16 : Cho ∆ ABC vuông tại A có BD là phân giác, kẻ DE ⊥ BC ( E∈BC ). Gọi F là giao điểm của AB và DE.
 Chứng minh rằng 
 a) BD là trung trực của AE b) DF = DC c) AD < DC; d) AE // FC.
Bài 17 : Cho tam giác ABC vuông tại A, góc B có số đo bằng 600 . Vẽ AH vuông
góc với BC, (H ∈ BC ) .
a. So sánh AB và AC; BH và HC;
 b. Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. Chứng minh rằng hai tam giác AHC và DHC bằng nhau.
c. Tính số đo của góc BDC.
Bài 18 : Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
 a. Chứng minh ∆BEM= ∆CFM . b. Chứng minh AM là trung trực của EF.
 c. Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A, M, D thẳng hàng.
Bài 19 : Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5 cm, BC = 6 cm.
a) Tính độ dài các đoạn thẳng BH, AH?
b) Gọi G là trọng tâm tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng. c) Chứng minh hai góc ABG và ACG bằng nhau
Bài 20 : Cho ∆ABC có AC > AB, trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA . Nối C với D
a. Chứng minh .Từ đó suy ra:
b. Kẻ đường cao AH. Gọi E là một điểm nằm giữa A và H. So sánh HC và HB; EC và EB.
Bài 21 : Cho ∆ABC (Â = 900) ; BD là phân giác của góc B (D∈AC). Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh DE ⊥ BE. b) Chứng minh BD là đường trung trực của AE.
 c) Kẻ AH ⊥ BC. So sánh EH và EC.
Bài 22 : Cho tam giác nhọn ABC có AB > AC, vẽ đường cao AH. 
 a. Chứng minh HB > HC b. So sánh góc BAH và góc CAH.
 c. Vẽ M, N sao cho AB, AC lần lượt là trung trực của các đoạn thẳng HM, HN.
 Chứng minh tam giác MAN là tam giác cân.
Bài 23 : Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I. 
a) Chứng minh OI ⊥ AB .
b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OI.Chứng minh BC ⊥ Ox .
Bài 24 : Cho tam giác ABC có \ = 900 , AB = 8cm, AC = 6cm .
a. Tính BC .
b. Trên cạnh AC lấy điểm E sao cho AE= 2cm;trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh ∆BEC = ∆DEC . 
c. Chứng minh DE đi qua trung điểm cạnh BC .
* MỘT SỐ ĐỀ KIỂM TRA HỌC KỲ II THAM KHẢO
Đề 1
Bài 1:Thời gian giải 1 bài toán của 40 học sinh được ghi trong bảng sau : (Tính bằng phút)
8
10
10
8
8
9
8
9
8
9
9
12
12
10
11
8
8
10
10
11
10
8
8
9
8
10
10
8
11
8
12
8
9
8
9
11
8
12
8
9
a)Dấu hiệu ở đây là gì ? Số các dấu hiệu là bao nhiêu ? b)Lập bảng tần số. c)Nhận xét
d)Tính số trung bình cộng , Mốt e)Vẽ biểu đồ đoạn thẳng.
Bài 2 : Cho : P(x) = - 2x2 + 3x4 + x3 +x2 - x Q(x) = 3x4 + 3x2 - - 4x3 – 2x2
Sắp xếp các hạng tử của mỗi đa thức theo luỹ thừa giảm dần của biến.
Tính P(x) + Q(x) và P(x) - Q(x) 
Chứng tỏ x = 0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
 Bài 3 : Cho đa thức : P(x) = x4 + 3x2 + 3
a)Tính P(1), P(-1). b)Chứng tỏ rằng đa thức trên không có nghiệm.
Bài 4 : Cho ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH 
 vuông góc với BC, kẻ DK vuông góc với AC.
 a)Chứng minh :; b)Chứng minh : AD là phân giác của góc HAC 
 c) Chứng minh : AK = AH. d) Chứng minh : AB + AC < BC +AH
Đề 2
Bài 1 : Thế nào là 2 đơn thức đồng dạng ? Cho 4 đơn thức đồng dạng với đơn thức -4x5y3
Bài 2 : Thu gọn các đa thức sau rồi tìm bậc của chúng :
 a)5x2yz(-8xy3z); b) 15xy2z(-4/3x2yz3). 2xy
Bài 3 : Cho 2 đa thức : A = -7x2- 3y2 + 9xy -2x2 + y2 B = 5x2 + xy – x2 – 2y2 
 a)Thu gọn 2 đa thức trên. b) Tính C = A + B ; c) Tính C khi x = -1 và y = -1/2
Bài 4 :Tìm hệ số a của đa thức A(x) = ax2 +5x – 3, biết rằng đa thức có 1 nghiệm bằng 1/2 ?
Bài 5: Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H € BC)
a) Chứng minh : HB = HC và = b)Tính độ dài AH ?
 c)Kẻ HD vuông góc AB ( D€AB), kẻ HE vuông góc với AC(E€AC). Chứng minh : DE//BC
Đề 3
Bài 1 : Cho các đơn thức : 2x2y3 ; 5y2x3 ; - x3 y2 ; - x2y3 
a)Hãy xác định các đơn thức đồng dạng . b)Tính đa thức F là tổng các đơn thức trên 
c)Tìm giá trị của đa thức F tại x = -3 ; y = 2 
Bài 2: Cho các đa thức f(x) = x5 – 3x2 + x3 – x2 -2x + 5 ; g(x) = x5 – x4+ x2 - 3x + x2 + 1
 a)Thu gọn và sắp xếp đa thức f(x) và g(x) theo luỹ thừa giảm dần. b)Tính h(x) = f(x) + g(x)
Bài 3 :Cho tam giác MNP vuông tại M, biết MN = 6cm và NP = 10cm . Tính độ dài cạnh MP
Bài 4 : Cho tam giác ABC trung tuyến AM, phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại 
 H, đường thẳng này cắt tia AC tại F. Chứng minh rằng :
 a) Tam giác ABC cân b) Vẽ đường thẳng BK//EF, cắt AC tại K. Chứng minh rằng : KF = CF
 c) AE = 
Đề 4
Bài 1:Tìm hiểu thời gian làm 1 bài tập (thời gian tính theo phút) của 35 học sinh (ai cũng làm được) thì người ta lập được bảng sau :
Thời gian 
3
4
5
6
7
8
9
10
11
12

Số học sinh
1
3
5
9
6
4
3
2
1
1
N = 35
a)Dấu hiệu ở đây là gì ? Tìm mốt của dấu hiệu. b)Tính số trung bình cộng . c)Vẽ biểu đồ đoạn thẳng
Bài 2 :Thu gọn các đơn thức sau, rồi tìm bậc của chúng :a) 2x2yz.(-3xy3z) ; b) (-12xyz).( -4/3x2yz3)y
Bài 3 : Cho P(x) = 1 + 2x5 -3x2 + x5 + 3x3 – x4 – 2x Q(x) = -3x5 + x4 -2x3 +5x -3 –x +4 +x2
 a)Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo luỹ thừa giảm của biến.
 b)Tính P(x) + Q(x) .c)Gọi N là tổng của 2 đa thức trên. Tính giá trị của đa thức N tại x =1 
 Bài 4 : Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .Chứng minh : a)Tam giác EDB = Tam giác EIB b)HB = BF c)DB<BF
d)Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng
Đề 5
Bài 1 Điểm kiểm tra toán của 1 lớp 7 được ghi như sau :
6
5
4
7
7
6
8
5
8
3
8
2
4
6
8
2
6
3
8
7
7
7
4
10
8
7
3
Lập bảng tần số . Tính số trung bình cộng , tìm Mốt của dấu hiệu b)Vẽ biểu đồ đoạn thẳng
Bài 2 : Cho 2 đa thức : 
 M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6 
 N(x) = - x2 – x4 + 4x3 – x2 -5x3 + 3x + 1 + x 
Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến 
Tính : M(x) + N(x) ; M(x) – N(x) 
Đặt P(x) = M(x) – N(x) . Tính P(x) tại x = -2
Bài 3 : Tìm m, biết rằng đa thức Q(x) = mx2 + 2mx – 3 có 1 nghiệm x = -1 
Bài 4 :Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC ( E € BC) . Đường thẳng EH và BA cắt nhau tại I .
a/ Chứng minh rẳng : ΔABH = ΔEBH ; b/ Chứng minh BH là trung trực của AE 
c/ So sánh HA và HC ; d/ Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC
Đề 6
Bài 1: Số lượng học sinh của từng lớp trong một trường THCS được ghi trong bảng như sau:
40
37
38
40
39
40
35
36
39
40
36
40
36
40
40
35
39
36
36
39
40
39
39
36
39
39
40
37
39
40
38
40
40
40
37
39
40
36
37
40
a/Dấu hiệu cần tìm hiểu là gì? Số các giá trị là bao nhiêu?
b/Có bao nhiêu giá trị khác nhau của dấu hiệu? c/Lập bảng tần số?
d/Tính số trung bình cộng và tìm mốt của dấu hiệu? e/Vẽ biểu đồ đoạn thẳng?
Bài 2 : Cho : P(x) = - 2x2 + 3x4 + 5x3 +x2 - x – 2 Q(x) = 3x4 + x2 - - 3x3 – x2
a/ Sắp xếp các hạng tử của mỗi đa thức theo luỹ thừa giảm dần của biến.
b/ Tính P(x) + Q(x) và P(x) - Q(x) 
c/ Tính : 2 P(x) + 5 Q(x

File đính kèm:

  • docDE CUONG ON TAP HOC KY II TOAN 7 NAM HOC 20132014.doc
Đề thi liên quan