Bài tập hàm số liên tục (2)

docx2 trang | Chia sẻ: huu1989 | Lượt xem: 890 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài tập hàm số liên tục (2), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
III. Hàm số liên tục
1. Hàm số liên tục tại một điểm:	y = f(x) liên tục tại x0 Û 
	· Để xét tính liên tục của hàm số y = f(x) tại điểm x0 ta thực hiện các bước:
	B1: Tính f(x0).
	B2: Tính (trong nhiều trường hợp ta cần tính , )
	B3: So sánh với f(x0) và rút ra kết luận.
2. Hàm số liên tục trên một khoảng: y = f(x) liên tục tại mọi điểm thuộc khoảng đó.
3. Hàm số liên tục trên một đoạn [a; b]: y = f(x) liên tục trên (a; b) và 
4. · Hàm số đa thức liên tục trên R.
 · Hàm số phân thức, các hàm số lượng giác liên tục trên từng khoảng xác định của chúng.
5. Giả sử y = f(x), y = g(x) liên tục tại điểm x0. Khi đó:
	· Các hàm số y = f(x) + g(x), y = f(x) – g(x), y = f(x).g(x) liên tục tại x0.
	· Hàm số y = liên tục tại x0 nếu g(x0) ¹ 0.
6. Nếu y = f(x) liên tục trên [a; b] và f(a). f(b)< 0 thì tồn tại ít nhất một số c Ỵ (a; b): f(c) = 0.
Nói cách khác: Nếu y = f(x) liên tục trên [a; b] và f(a). f(b)< 0 thì phương trình f(x) = 0 có ít nhất một nghiệm cỴ (a; b).
Mở rộng: Nếu y = f(x) liên tục trên [a; b]. Đặt m = , M = . Khi đó với mọi T Ỵ (m; M) luôn tồn tại ít nhất một số c Ỵ (a; b): f(c) = T.
Xét tính liên tục của hàm số tại điểm được chỉ ra:
a) 	b) 
c) 	d) 
e) 	f) 
Tìm m, n để hàm số liên tục tại điểm được chỉ ra:
a) 	b) 
c) 
d) 
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) 	b) 
c) 	d) 
Tìm các giá trị của m để các hàm số sau liên tục trên tập xác định của chúng:
a) 	b) 
c) 	d) 
Chứng minh rằng các phương trình sau có 3 nghiệm phân biệt:
a) 	b) 	c) 
Chứng minh rằng các phương trình sau luôn có nghiệm:
a) 	b) 	c) 
Chứng minh rằng phương trình: có 5 nghiệm trên (–2; 2).
Chứng minh rằng các phương trình sau luôn có nghiệm với mọi giá trị của tham số:
a) 	b) 
c) 	d) 
e) 	f) 
Chứng minh các phương trình sau luôn có nghiệm:
a) với 2a + 3b + 6c = 0	b) với a + 2b + 5c = 0
c) 
Chứng minh rằng phương trình: luôn có nghiệm x Ỵ với a ¹ 0 và 2a + 6b + 19c = 0.

File đính kèm:

  • docxBAI TAP HAM SO LIEN TUC.docx
Đề thi liên quan