Bài tập rèn luyện kiểm tra môn Toán Lớp 7

doc2 trang | Chia sẻ: thuongnguyen92 | Lượt xem: 425 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bài tập rèn luyện kiểm tra môn Toán Lớp 7, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BÀI TẬP RÈN LUYỆN :
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD  AB (D AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH   BC (H  BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
Bài 2:
Cho  có AB = AC. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AN = AM. Gọi H là trung điểm của BC.
a)    Chứng minh: ΔABH = ΔACH
b)    Gọi E là giao điểm của AH và MN. Chứng minh: AH   MM ; MM // BC.
BÀI 3 : 
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a)    Chứng minh BE = DC
b)    Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c)    Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC  v à  AD // BC.
BÀI  5.
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 6 :
Cho tam giác ABC cân tại A và có  .
Tính  và 
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 7 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và  EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 8 :
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 9 :
Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác  ACE đều.
A, E, F thẳng hàng.
Bài 10 :
Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K. chứng minh : BH = CK.

File đính kèm:

  • doctoan lop 7.doc
Đề thi liên quan