Bộ đề ôn thi TN THPT môn Toán (Đề 6, 7, 8, 9)

doc2 trang | Chia sẻ: huu1989 | Lượt xem: 1149 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Bộ đề ôn thi TN THPT môn Toán (Đề 6, 7, 8, 9), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 6
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH. (7điểm)
Câu I.(3 điểm) Cho hàm số y = x(x – 3)2 có đồ thị (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
Câu II. (3 điểm)
1/ Giải bất phương trình: .
2/ Tính I = .
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2e2x trên nửa khỏang (-; 0 ]
Câu III.(1 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Biết AB = a, BC = 2a, SC = 3a và cạnh bên SA vuông góc với đáy. Tính thể tích khối chóp S.ABC theo a.
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a. (2 điểm). Trong không gian Oxyz, cho bốn điểm A(1 ; -2 ; 2), B(1 ; 0 ; 0), C(0 ; 2 ; 0), D(0 ; 0 ; 3).
1/ Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
2/ Tìm điểm A’ sao cho mp(BCD) là mặt phẳng trung trực của đọan AA’.
Câu V a. (1 điểm). Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hòanh hình phẳng giới hạn bởi các đường y = sinx.cosx, y = 0, x = 0, x = .
2. Theo chương trình nâng cao.
Câu IV b. (2 điểm). Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: và hai mặt phẳng (P1): x + y – 2z + 5 = 0, (P2): 2x – y + z + 2 = 0.
1/ Tính góc giữa mp(P1) và mp(P2), góc giữa đường thẳng d và mp(P1).
2/ Viết phương trình mặt cầu tâm I thuộc d và tiếp xúc với mp(P1) và mp(P2).
Câu Vb. (1 điểm). Tính thể tích khối tròn xoay tạo thành khi quay quanh trục tung hình phẳng giới hạn bởi các đường y = x2 và y = 6 - | x | .
ĐỀ 7
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH.(7 điểm).
Câu I. (3 điểm). Cho hàm số y = có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Tìm m để đường thẳng d: y = -x + m cắt đồ thị (C) tại hai điểm phân biệt.
Câu II.(3 điểm)
1/ Giải phương trình: 4x + 10x = 2.25x.
2/ Tính I = 
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = trên 
đọan [ 1; e ].
Câu III.(1 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a và vuông góc với đáy.
1/ Tính thể tích khối chóp S.ABCD.
2/ Chứng minh trung điểm I của cạnh SC là tâm của mặt cầu ngọai tiếp hình chóp S.ABCD.
II. PHẦN RIÊNG. (3 điểm)
1. Theo chương trình chuẩn.
Câu IV a.(2 điểm). Trong không gian với hệ tọa độ Oxyz,cho hai điểm A(2 ; 1 ; 1), B(2 ; -1 ; 5).
1/ Viết phương trình mặt cầu (S) đường kính AB.
2/ Tìm điểm M trên đường thẳng AB sao cho tam giác MOA vuông tại O.
Câu V a. (1 điểm). Giải phương trình sau trên tập số phức : z4 – 1 = 0.
2. Theo chương trình nâng cao.
Câu IV b.(2 điểm). Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x – 4y – 6z = 0 và hai điểm M(1 ; 1 ; 1), N(2 ; -1 ; 5).
1/ Tìm tâm I và bán kính R của mặt cầu (S).Viết phương trình mặt phẳng (P) qua các hình chiếu của tâm I trên các trục tọa độ.
 	2/ Chứng tỏ đường thẳng MN cắt mặt cầu (S) tại hai điểm. Tìm tọa độ các giao điểm đó.
Câu V b.(1 điểm). Biểu diễn số phức z = 1 – i. dưới dạng lượng giác.
ĐỀ 8
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH. (7 điểm)
Câu I. (3 điểm). Cho hàm số y = có đồ thị là (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Viết phương trình tiếp tuyến của (C) tại điểm M(1; 0).
Câu II. (3 điểm)
1/ Giải bất phương trình: .
2/ Tính I = .
3/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = sin2x – x trên đọan .
Câu III. (1 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh bên 
SA = và vuông góc với đáy, góc giữa SC và đáy là 450 .Tính thể tích của khối chóp.
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu IV a. (2 điểm).Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3 ; 0 ; -2), B(1 ; -2 ; 4).
1/ Viết phương trình đường thẳng AB và phương trình mặt phẳng trung trực của đọan AB.
2/ Viết phương trình mặt cầu tâm A và đi qua điểm B. Tìm điểm đối xứng của B qua A.
Câu V a.(1 điểm). Tính thể tích của khối tròn xoay được tạo thành khi quay quanh trục tung hình phẳng giới hạn bởi các đường y = 2 – x2 và y = x .
2. Theo chương trình nâng cao.
Câu IV b. (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: và d’: .
1/ Chứng minh d song song với d’. Tính khỏang cách giữa d và d’.
2/ Viết phương trình mặt phẳng (P) chứa d và d’.
Câu V b.(1 điểm).Cho hàm số y = (1). Viết phương trình đường thẳng d đi qua điểm A(2 ; 0) và có hệ số góc là k. Với giá trị nào của k thì đường thẳng d tiếp xúc với đồ thị của hám số (1).
ĐỀ 9
I.PHẦN CUNG CHO TẤT CẢ THÍ SINH. (7 điểm).
Câu I.(3 điểm). Cho hàm số y = -x3 + 3x2 – 2 có đồ thị (C).
1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2/ Viết phương trình tiếp tuyến với (C) biết tiếp tuyến có hệ số góc k = -9.
Câu II.(3 điểm).
1/ Giải phương trình: 
2/ Tính I = 
3/ Tìm giá trị nhỏ nhất của hàm số y = x – lnx + 3.
Câu III. (1 điểm). Cho hình chóp S.ABC có SA, AB, BC vuông góc với nhau từng đôi một. Biết SA = a, AB = BC = a.Tính thể tích của khối chóp và tìm tâm của mặt cầu ngọai tiếp hình chóp.
II. PHẦN RIÊNG. (3 điểm).
1. Theo chương trình chuẩn.
Câu IV a. (2 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm A(2 ; -1 ; 3), mặt phẳng (P): 2x - y - 2z + 1 = 0 và đường thẳng d: .
1/ Tìm tọa độ điểm A’ đối xứng của A qua mp(P).
2/ Tìm tọa độ của điểm M trên đường thẳng d sao cho khỏang cách từ M đến mp(P) bằng 3.
Câu V a.(1 điểm). Giải phương trình sau trên tập số phức: z4 – z2 – 6 = 0
2. Theo chương trình nâng cao.
Câu IV b. (2 điểm). Trong không gian với hệ tọa độ Oxyz, cho điểm A(1 ; 1 ; 1), mp(P): x + y – z – 2 = 0 và đường thẳng d: .
1/ Tìm điểm A’ đối xứng của A qua d.
2/ Viết phương trình đường thẳng đi qua A, song song với mp(P) và cắt d.
Câu Vb. (1 điểm). Giải hệ phương trình:
=============================

File đính kèm:

  • docTHIHKII TOAN 11NC.doc