Chuyên đề Ôn thi tốt nghiệp trung học phổ thông môn Toán - Chương II: Thể tích lăng trụ (Có đáp án)

doc22 trang | Chia sẻ: thienbinh2k | Ngày: 11/07/2023 | Lượt xem: 214 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Chuyên đề Ôn thi tốt nghiệp trung học phổ thông môn Toán - Chương II: Thể tích lăng trụ (Có đáp án), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
THỂ TÍCH LĂNG TRỤ
Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy
Ví dụ 1: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác ABC vuông cân tại A có 
cạnh BC = a và biết A'B = 3a. Tính thể tích khối lăng trụ.
Lời giải:
 Ta có
 vuông cân tại A nên AB = AC = a
 ABC A'B'C' là lăng trụ đứng 
 Vậy V = B.h = SABC .AA' = 
Ví dụ 2:Cho lăng trụ tứ giác đều ABCD.A’B’C’D' có cạnh bên bằng 4a và đường chéo 5a. Tính thể tích khối lăng trụ này
Lời giải:
 ABCD A'B'C'D' là lăng trụ đứng nên 
 BD2 = BD'2 - DD'2 = 9a2 
 ABCD là hình vuông 
Suy ra B = SABCD = 
 Vậy V = B.h = SABCD.AA' = 9a3
Ví dụ 3: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh a = 4 và biết diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.
+ Phân tích V= B.h để tìm B và h
 trong hình là các đối tượng nào ? 
+ Tìm diên tích B = SABC bằng công thức nào ?
+ Từ diện tích suy ra cạnh nào ? tại sao ? 
+ Tìm h = AA' dùng tam giác nào và định lí gì ?
Lời giải:
 Gọi I là trung điểm BC .Ta cóABC đều nên
Vậy : VABC.A’B’C’ = SABC .AA'= 
Ví dụ 4: Cho hình hộp đứng có đáy là hình thoi cạnh a và có góc nhọn bằng 600 Đường chéo lớn của đáy bằng đường chéo nhỏ của lăng trụ. Tính thể tích hình hộp . 
+ Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
+ Tìm diện tích B của hình thoi ABCD bằng cách nào ?
+ Tìm h = DD' trong tam giác vuông nào ? và định lí gì ?
Lời giải:
Ta có tam giác ABD đều nên : BD = a
và SABCD = 2SABD = 
Theo đề bài BD' = AC = 
 Vậy V = SABCD.DD' = 
Ví dụ 5: Một tấm bìa hình vuông có cạnh 44 cm, người ta cắt bỏ đi ở mỗi góc tấm bìa một hình vuông cạnh 12 cm rồi gấp lại thành một cái hộp chữ nhật không có nắp. Tính thể tích cái hộp này. 
+ Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
+ Tìm h = AA' ? Tại sao ?
+ Tìm AB ? Suy ra B = SABCD = AB2 ? 
Giải
 Theo đề bài, ta có 
AA' = BB' = CC' = DD' = 12 cm nên ABCD là hình vuông có AB = 44 cm - 24 cm = 20 cm 
 và chiều cao hộp h = 12 cm
 Vậy thể tích hộp là V = SABCD.h = 4800cm3
BÀI TẬP TỰ RÈN LUYỆN
Bài 1: Cho lăng trụ đứng có đáy là tam giác đều biết rằng tất cả các cạnh của lăng trụ bằng a. Tính thể tích và tổng diện tích các mặt bên của lăng trụ. ĐS: ; S = 3a2
Bài 2: Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tứ giác đều cạnh a biết rằng . Tính thể tích của lăng trụ. Đs: V = 2a3
Bài 3.Lăng trụ đứng tứ giác có đáy là hình thoi mà các đường chéo là 6cm và 8cm biết rằng chu vi đáy bằng 2 lần chiều cao lăng trụ.Tính thể tích và tổng diện tích các mặt của lăng trụ. Đs:V = 240cm3 và S = 248cm2
Bài 4: Cho lăng trụ đứng tam giác có độ dài các cạnh đáy là 37cm ; 13cm ;30cm và biết tổng diện tích các mặt bên là 480 cm2 . Tính thể tích lăng trụ .	 Đs: V = 1080 cm3
Bài 5: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại A ,biết rằng chiều cao lăng trụ là 3a và mặt bên AA'B'B có đường chéo là 5a . Tính thể tích lăng trụ.	 Đs: V = 24a3
Bài 6:Cho lăng trụ đứng tứ giác đều có tất cả các cạnh bằng nhau và biết tổng diện tích các mặt của lăng trụ bằng 96 cm2 .Tính thể tích lăng trụ.	 Đs: V = 64 cm3
Bài 7.Cho lăng trụ đứng tam giác có các cạnh đáy là 19,20,37 và chiều cao của khối lăng trụ bằng trung bình cộng các cạnh đáy. Tính thể tích của lăng trụ.	 Đs: V = 2888
Bài 8. Cho khối lập phương có tổng diện tích các mặt bằng 24 m2 .Tính thể tích khối lập phương 
 	 Đs: V = 8 m3
Bài 9:Cho hình hộp chữ nhật có 3 kích thước tỉ lệ thuận với 3,4,5 biết rằng độ dài một đường chéo của hình hộp là 1 m.Tính thể tích khối hộp chữ nhật.	 Đs: V = 0,4 m3
Bài 10. Cho hình hộp chữ nhật biết rằng các đường chéo của các mặt lần lượt là . Tính thể tích khối hộp này.	 Đs: V = 6
 Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng
Ví dụ 1: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết A'B hợp với đáy ABC một góc 600 . Tính thể tích lăng trụ.
*) Tìm hình chiếu của A'B trên đáy ABC. Suy ra góc [A'B,(ABC)] = ?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của tam giác ABC bằng công thức nào ?
*) Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Lời giải:
 Ta có là hình chiếu của A'B trên đáy ABC . 
 Vậy 
 SABC = 
 Vậy V = SABC.AA' = 
Ví dụ 2: Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông tại A với 
AC = a , = 60 o biết BC' hợp với (AA'C'C) một góc 300. Tính AC' và thể tích lăng trụ.
Phân tích *) Tìm hình chiếu của BC' trên (AA'C'C). Suy ra góc [BC',(AA'C'C)] = ?
 *) Tìm AC' trong tam giác nào?Dùng hệ thức lượng giác gì ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Tìm diện tích B của tam giác ABC bằng công thức nào ?
 *) Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Lời giải: 
.
Ta có: 
nên AC' là hình chiếu của BC' trên (AA'C'C).
Vậy góc[BC';(AA"C"C)] = = 30o 
 V = B.h = SABC.AA'
 là nửa tam giác đều nên . Vậy V = 
Ví dụ 3: Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 300. Tính thể tích và tổng diên tích của các mặt bên của lăng trụ . 
Phân tích
 *) Dựng hình vuông ABCD hay A'B'C'D' và các cạnh bên của hình lăng trụ .
 *) Dựng BD' và BD ? 
phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Tìm hình chiếu của BD' trên đáy ABCD. Suy ra góc [BD',(ABCD)] = ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Tìm diện tích B của hình vuông ABCD bằng công thức nào ?
 *) Tìm h = DD' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Giải: Ta có ABCD A'B'C'D' là lăng trụ đứng nên ta có: và BD là hình chiếu của BD' trên ABCD . Vậy góc [BD';(ABCD)] = 
Vậy V = SABCD.DD' = S = 4SADD'A' = 
Ví dụ 4: Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và = 60o biết AB' hợp với đáy (ABCD) một góc 30o .Tính thể tích của hình hộp.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
*) Tìm hình chiếu của AB' trên (ABCD). Suy ra góc [AB',(ABCD)] = ?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Dựng BD. Suy ra ABD có hình tính gì ? Suy ra diện tích B của ABCD bằng cách nào? 
+Tính h = BB' trong tam giác nào ? Dùng hệ thức lượng giác nào ?
Giải đều cạnh a 
 vuông tạiB
 Vậy 
BÀI TẬP TỰ RÈN LUYỆN
Bài 1. Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông cân tại B biết A'C = a và A'C hợp với mặt bên (AA'B'B) một góc 30o . Tính thể tích lăng trụ	 	ĐS: 
Bài 2. Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại B biết BB' = AB = a và B'C hợp với đáy (ABC) một góc 30o . Tính thể tích lăng trụ.	 	ĐS: 
Bài 3. Cho lăng trụ đứng ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết AB' hợp với mặt bên (BCC'B') một góc 30o . Tính độ dài AB' và thể tích lăng trụ . 	 	ĐS: ; 
Bài 4. Cho lăng trụ đứng ABC A'B'C' có đáy ABC vuông tại A biết AC = a và biết BC' hợp với mặt bên (AA'C'C) một góc 30o .Tính thể tích lăng trụ và diện tích tam giác ABC'. ĐS 
Bài 5. Cho lăng trụ tam giác đều ABC A'B'C' có khoảng cách từ A đến mặt phẳng (A'BC) bằng a và AA' hợp với mặt phẳng (A'BC) một góc 300 . Tính thể tích lăng trụ 	ĐS: 
Bài 6. Cho hình hộp chữ nhật ABCD A'B'C'D' có đường chéo A'C = a và biết rằng A'C hợp với (ABCD) một góc 30o và hợp với (ABB'A') một góc 45o .Tính thể tích của khối hộp chữ nhật. Đs: 
Bài 7. Cho hình hộp đứng ABCD A'B'C'D' có đáy ABCD là hình vuông . Gọi O là tâm của ABCD và OA' = a Tính thể tích của khối hộp khi:	1) ABCD A'B'C'D' là khối lập phương .	ĐS 
2) OA' hợp với đáy ABCD một góc 60o .	ĐS 
3) A'B hợp với (AA'CC') một góc 30o.	ĐS 
Bài 8. Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và BD' = a . Tính thể tích lăng trụ trong các trường hợp sau đây:	1) BD' hợp với đáy ABCD một góc 60o .	ĐS 
 	2) BD' hợp với mặt (AA'D'D) một góc 30o . ĐS 
Bài 9. Chiều cao của lăng trụ tứ giác đều bằng a và góc của 2 đường chéo phát xuất từ một đỉnh của 2 mặt bên kề nhau là 60o.Tính thể tích lăng trụ và tổng diện tích các mặt của lăng trụ . 	Đs: V = a3 và S = 6a2
Bài 10.Cho hình hộp chữ nhật ABCD A'B'C'D' có AB = a ;AD = b;AA' = c và BD' = AC' = CA' =
1) Chúng minh ABCD A'B'C'D' là hộp chữ nhật.
2) Gọi x,y,z là góc hợp bởi một đường chéo và 3 mặt cùng đi qua một đỉng thuộc đường chéo. 
Chứng minh rằng .
Dạng 3: Lăng trụ đứng có góc giữa 2 mặt phẳng
Ví dụ 1. Cho lăng trụ đứng tam giác ABC A'B'C' có đáy ABC là tam giác vuông cân tại B với BA = BC = a ,biết (A'BC) hợp với đáy (ABC) một góc 600 .Tính thể tích lăng trụ.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Nhận xét AB và A'B có vuông góc với BC không ? tại sao?
 *) Suy ra góc[(A'BC);(ABC)] = ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Tìm diện tích B của tam giác ABC bằng công thức nào ?
 *) Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Lời giải:
Ta có 
 Vậy 
. 
SABC = Vậy V = SABC.AA' = 
Ví dụ 2: Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều . Mặt (A’BC) tạo với đáy một góc 300 và diện tích tam giác A’BC bằng 8. Tính thể tích khối lăng trụ.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Nhận xét có hình tính gì ? Suy ra I là trung điểm của BC cho ta vị trí AI và A'I thế nào với 
 BC? Suy ra góc[(A'BC);(ABC)] = ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Đặt BC = 2x . Suy ra A'I bởi tam giác nào ?
 *) Từ diện tích tam giá A"BC suy ra x bởi công thức nào?
 *) Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Giải. đều mà AA' nên A'I(đl 3). 
Vậy góc[(A'BC);)ABC)] = = 30o
 Giả sử BI = x .Ta có 
 A’A = AI.tan 300 = 
Vậy VABC.A’B’C’ = CI.AI.A’A = x3 
Mà SA’BC = BI.A’I = x.2x = 8.Do đó VABC.A’B’C’ = 8
Ví dụ 3. Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh đáy a và mặt phẳng (BDC') hợp với đáy (ABCD) một góc 60o. Tính thể tích khối hộp chữ nhật. 
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
*) Xác định góc[BDC');(ABCD)] = ?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABCD bằng công thức nào ?
*) Tìm h = CC' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Giải. 
Gọi O là tâm của ABCD . Ta có
ABCD là hình vuông nên
CC'(ABCD) nên OC'BD (đl 3).
Vậy góc[(BDC');(ABCD)] = = 60o 
 Ta có V = B.h = SABCD.CC'
ABCD là hình vuông nên SABCD = a2 
 vuông nên CC' = OC.tan60o =
Vậy V = 
Ví dụ 4. Cho hình hộp chữ nhật ABCD A'B'C'D' có AA' = 2a ; mặt phẳng (A'BC) hợp với đáy (ABCD) một góc 60o và A'C hợp với đáy (ABCD) một góc 30o .Tính thể tích khối hộp chữ nhật. 
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
*) Nhận xét AB và A'B có vuông góc với BC không ? tại sao?
*) Suy ra góc[(A'BC);(ABCD)] = ?
*) Tìm hình chiếu của A'C trên (ABCD) ? Suy ra góc[A'C,(ABCD)] = ?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABCD bằng công thức nào ?
*) Tìm AB và AC bởi tam giác vuông nào? Dùng hệ thức lượng giác nào ?
*) Tìm h = AA' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Ta có AA' AC là hình chiếu của A'C trên (ABCD) . 
Vậy góc[A'C,(ABCD)] = 
BC AB BC A'B (đl 3) . [(A'BC),(ABCD)] = 
AC = AA'.cot30o = 
AB = AA'.cot60o = 
 Vậy V = AB.BC.AA' = 
BÀI TẬP TỰ RÈN LUYỆN
Bài 1. Cho hộp chữ nhật ABCD A'B'C'D' có AA' = a biết đường chéo A'C hợp với đáy ABCD một góc 30o và 
mặt (A'BC) hợp với đáy ABCD một góc 600 .Tính thể tích hộp chữ nhật. 	Đs: 
Bài 2. Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông và cạnh bên bằng a biết rằng mặt (ABC'D') hợp với đáy một góc 30o.Tính thể tích khối lăng trụ. 	Đs: V = 3a3
Bài 3. Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ. 	Đs: 
Bài 4. Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác cân tại A với AB = AC = a và biết rằng (A'BC) hợp với đáy ABC một góc 45o. Tính thể tích lăng trụ.	Đs: 
Bài 5. Cho lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông tại B và BB' = AB = h biết rằng (B'AC) hợp với đáy ABC một góc 60o. Tính thể tích lăng trụ. 	Đs: 
Bài 6. Cho lăng trụ đứng ABC A'B'C' có đáy ABC đều biết cạnh bên AA' = a.Tính thể tích lăng trụ trong các trường hợp sau đây:	
1) Mặt phẳng (A'BC) hợp với đáy ABC một góc 60o .	Đs: 
2) A'B hợp với đáy ABC một góc 45o.	ĐS: 
3) Chiều cao kẻ từ A' của tam giác A'BC bằng độ dài cạnh đáy của lăng trụ.	ĐS: 
Bài 7. Cho lăng trụ tứ giác đều ABCD A'B'C'D' có cạnh bên AA' = 2a .Tính thể tích lăng trụ trong các trường hợp sau đây:	1) Mặt (ACD') hợp với đáy ABCD một góc 45o .	ĐS : V = 16a3
2) BD' hợp với đáy ABCD một góc 600 .	ĐS : V = 12a3
3) Khoảng cách từ D đến mặt (ACD') bằng a .	ĐS : 
Bài 8. Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a. Tính thể tích lăng trụ trong các trường hợp sau đây:	1)Mặt phẳng (BDC') hợp với đáy ABCD một góc 60o 	ĐS : .
2)Tam giác BDC' là tam giác đều.	ĐS : V = 
3)AC' hợp với đáy ABCD một góc 450	ĐS : V = 
Bài 9. Cho lăng trụ đứng ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc nhọn A = 60o .Tính thể tích lăng trụ trong các trường hợp sau đây:	1) (BDC') hợp với đáy ABCD một góc 60o .	ĐS: 
2)Khoảng cách từ C đến (BDC') bằng 	ĐS : 
3)AC' hợp với đáy ABCD một góc 450	ĐS : 
Bài 10. Cho hình hộp chữ nhật ABCD A'B'C'D' có BD' = 5a ,BD = 3a.Tính thể tích khối hộp trong các trường hợp sau đây:	1) AB = a	ĐS : 
2) BD' hợp với AA'D'D một góc 30o	ĐS : 
3) (ABD') hợp với đáy ABCD một góc 300	ĐS : 
Dạng 4. Khối lăng trụ xiên
Ví dụ 1. Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a , biết cạnh bên là và hợp với đáy ABC một góc 60o . Tính thể tích lăng trụ.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
*) Xác định góc giữa cạnh bên với đáy : Hình chiếu của CC' trên (ABC) là gì?
*) Suy ra góc[CC';(ABC)] = ?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của tam giác ABC bằng công thức nào ?
*) Tìm h = CC' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Lời giải:
 Ta có là hình chiếu của CC' trên (ABC)
 Vậy 
 SABC = .Vậy V = SABC.C'H = 
Ví dụ 2. Cho lăng trụ xiên tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a . Hình chiếu của A' xuống (ABC) là tâm O đường tròn ngoại tiếp tam giác ABC biết AA' hợp với đáy ABC một góc 60 .
	1) Chứng minh rằng BB'C'C là hình chữ nhật.
	 2) Tính thể tích lăng trụ .
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
*) Xác định góc giữa cạnh bên AA' với đáy ABC : 
 Hình chiếu của AA' trên (ABC) là gì? Suy ra góc[AA'';(ABC)] = ?
*) Chứng minh BC AA' bằng cách Chứng minh BC mặt phẳng nào ? Tứ đó có thể BCCC' không ? 
 tại sao? Vậy BB'C'C là hình gì?
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của tam giác ABC bằng công thức nào ?
*) Tìm h = AA'' trong tam giác vuông nào ? và dùng hệ thức lượng giác nào ?
Lời giải:
 1) Ta có là hình chiếu của AA' trên (ABC)
 Vậy 
 Ta có BB'CC' là hình bình hành ( vì mặt bên của lăng trụ)
 tại trung điểm H của BC nên (đl 3 )
 mà AA'//BB' nên .Vậy BB'CC' là hình chữ nhật.
2) đều nên 
 Vậy V = SABC.A'O = 
Ví dụ 3. Cho hình hộp ABCD.A’B’C’D’ có đáy là hình chữ nhật với AB = AD =.Hai mặt bên (ABB’A’) và (ADD’A’) lần lượt tạo với đáy những góc 450 và 600. . Tính thể tích khối hộp nếu biết cạnh bên bằng 1.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc giữa mặt bên với đáy.Dựng đường cao A'H và HNAD 
 HMAB Suy ra góc[(ABB'A');(ABCD)] =? góc[(ADD'A');(ABCD)] = ? 
*) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABCD bằng công thức nào ?
*) Tìm h = A'H không dùng trực tiếp tam giác vuông nào được ? Đặt x = A'H
*) Dùng hai tam giác nào bởi định lý gì để tạo ra phương trình theo x ?
Lời giải:
Kẻ A’H ,HM (đl 3)
Đặt A’H = x . Khi đó A’N = x : sin 600 = 
AN = 
Mà HM = x.cot 450 = x
Nghĩa là x = 
Vậy VABCD.A’B’C’D’ = AB.AD.x = 
BÀI TẬP TỰ RÈN LUYỆN
Bài 1. Cho lăng trụ ABC A'B'C'có các cạnh đáy là 13;14;15và biết cạnh bên bằng 2a hợp với đáy ABCD một góc 45o . Tính thể tích lăng trụ. 	Đs: V = 
Bài 2. Cho lăng trụ ABCD A'B'C'D'có đáy ABCD là hình vuông cạnh a và biết cạnh bên bằng 8 hợp với đáy ABC một góc 30o.Tính thể tích lăng trụ. 	Đs: V =336
Bài 3. Cho hình hộp ABCD A'B'C'D'có AB =a;AD =b;AA' = c và và biết cạnh bên AA' hợp với đáy ABC một góc 60o.Tính thể tích lăng trụ.	Đs: V =
Bài 4. Cho lăng trụ tam giác ABC A'B'C' có đáy ABC là tam giác đều cạnh a và điểm A' cách đều A,B,C biết AA' = .Tính thể tích lăng trụ. 	 	Đs: 
Bài 5. Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều cạnh a , đỉnh A' có hình chiếu trên (ABC) nằm trên đường cao AH của tam giác ABC biết mặt bên BB'C'C hợp vớio đáy ABC một góc 60o .
1) Chứng minh rằng BB'C'C là hình chữ nhật.
2) Tính thể tích lăng trụ ABC A'B'C'. 	Đs: 
Bài 6. Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều với tâm O. Cạnh b CC' = a hợp với đáy ABC 1 góc 60o và C' có hình chiếu trên ABC trùng với O .
1) Chứng minh rằng AA'B'B là hình chữ nhật. Tính diện tích AA'B'B.	ĐS : 
2) Tính thể tích lăng trụ ABCA'B'C'. 	ĐS: 
Bài 7. Cho lăng trụ ABC A'B'C' có đáy ABC là tam giác đều cạnh a biết chân đường vuông góc hạ từ A' trên ABC trùng với trung điểm của BC và AA' = a.
Tìm góc hợp bởi cạnh bên với đáy lăng trụ.	ĐS : 30o. 
Tính thể tích lăng trụ	ĐS: 
Bài 8. Cho lăng trụ xiên ABC A'B'C' có đáy ABC là tam giác đều với tâm O. Hình chiếu của C' trên (ABC) là O.Tính thể tích của lăng trụ biết rằng khoảng cách từ O đến CC' là a và 2 mặt bên AA'C'Cvà BB'C'C hợp với nhau một góc 90o	Đs: 
Bài 9. Cho hình hộp ABCD A'B'C'D' có 6 mặt là hình thoi cạnh a,hình chiếu vuông góc của A' trên(ABCD) nằm trong hình thoi,các cạnh xuất phát từ A của hộp đôi một tạo với nhau một góc 60o .
Chứng minh rằng H nằm trên đường chéo AC của ABCD.
Tính diện tích các mặt chéo ACC'A' và BDD'B'.	ĐS: 
Tính thể tích của hộp. 	Đs: 
Bài 10. Cho hình hộp ABCD A'B'C'D' có đáy ABCD là hình thoi cạnh a và góc A = 60o chân đường vuông góc hạ từ B' xuông ABCD trùng với giao điểm 2 đường chéo đáy biết BB' = a.
 	1) Tìm góc hợp bởi cạnh bên và đáy.	ĐS : 60o
 	2) Tính thể tích và tổng diện tích các mặt bên của hình hộp.	ĐS:
THỂ TÍCH KHỐI CHÓP
Dạng 1: Khối chóp có cạnh bên vuông góc với đáy
Ví dụ 1. Cho hình chóp SABC có SB = SC = BC = CA = a . Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp .
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của SBC bằng công thức nào ?
Lời giải:
 Ta có 
Do đó 
Ví dụ 2: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o.
	1) Chứng minh các mặt bên là tam giác vuông . 
	 2) Tính thể tích hình chóp .
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc[SB,(ABC)] = ? Tại sao?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABC bằng công thức nào ? Tính BA ?
*) Tìm h = SA qua tam giác nào bởi công thức gì ?
Lời giải:
1) 
 mà ( đl 3 ).
Vậy các mặt bên chóp là tam giác vuông.
 2) Ta có là hình chiếu của SB trên (ABC).
 Vậy góc[SB,(ABC)] = .
vuông cân nên BA = BC = 
 SABC =  ; 
Vậy 
Ví dụ 3. Cho hình chóp SABC có đáy ABC là tam giác đều cạnh a biết SA vuông góc với đáy ABC và (SBC) hợp với đáy (ABC) một góc 60o. Tính thể tích hình chóp .
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc[(SBC),(ABC)] = ? Tại sao?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABC bằng công thức nào ? 
*) Tìm h = SA qua tam giác nào và công thức gì ?
Lời giải: 
 M là trung điểm của BC,vì tam giác ABC đều nên 
AM BCSABC (đl3) .[(SBC);(ABC)] = .
Ta có V = 
Vậy V = 
Ví dụ 4. Cho hình chóp SABCD có đáy ABCD là hình vuông có cạnh a và SA vuông góc đáy ABCD và mặt bên (SCD) hợp với đáy một góc 60o.
	1) Tính thể tích hình chóp SABCD.
	2) Tính khoảng cách từ A đến mặt phẳng (SCD).
Phân tích đề bài để dựng hình :
*) Dựng tứ giác ABCD và cạnh bên SA(ABCD) ? . 
Hướng dẩn học sinh phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc[(SCD),(ABCD)] = ? Tại sao?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Tìm diện tích B của ABCD bằng công thức nào ? 
 *) Tìm h = SA qua tam giác nào bởi công thức gì ?
Lời giải: 
1)Ta có và ( đl 3 ).(1)
 Vậy góc[(SCD),(ABCD)] = = 60o .
vuông nên SA = AD.tan60o = 
Vậy 
 2) Ta dựng AH ,vì CD(SAD) (do (1) ) nên CD AH 
 Vậy AH là khoảng cách từ A đến (SCD).
. Vậy AH = 
BÀI TẬP TỰ RÈN LUYỆN
Bài 1: Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B với BA=BC=a biết SA vuông góc với đáy ABC và SB hợp với (SAB) một góc 30o. Tính thể tích hình chóp . 	Đs: V = 
Bài 2. Cho hình chóp SABC có SA vuông góc với đáy (ABC) và SA = h ,biết rằng tam giác ABC đều và mặt (SBC) hợp với đáy ABC một góc 30o .Tính thể tích khối chóp SABC	Đs: 
Bài 3. Cho hình chóp SABC có đáy ABC vuông tại A và SB vuông góc với đáy ABC biết SB = a,SC hợp với (SAB) một góc 30o và (SAC) hợp với (ABC) một góc 60o .Chứng minh rằng SC2 = SB2 + AB2 + AC2 Tính thể tích hình chóp. 	Đs: Bài 4: Cho tứ diện ABCD có AD(ABC) biết AC = AD = 4 cm,AB = 3 cm, BC = 5 cm.
1) Tính thể tích ABCD. 	Đs: V = 8 cm3
2) Tính khoảng cách từ A đến mặt phẳng (BCD). 	Đs: d = 
Bài 5: Cho khối chóp SABC có đáy ABC là tam giác cân tại A với BC = 2a , , biết và mặt (SBC) hợp với đáy một góc 45o . Tính thể tích khối chóp SABC. 	Đs: 
Bài 6: Cho khối chóp SABCD có đáy ABCD là hình vuông biết SA (ABCD),SC = a và SC hợp với đáy một góc 60o Tính thể tích khối chóp. 	Đs: 
Bài 7: Cho khối chóp SABCD có đáy ABCD là hình chữ nhật biết rằng SA (ABCD) , SC hợp với đáy một góc 45o và AB = 3a , BC = 4a. Tính thể tích khối chóp. 	Đs: V = 20a3
Bài 8: Cho khối chóp SABCD có đáy ABCD là hình thoi cạnh a và góc nhọn A bằng 60o và SA (ABCD) 
Biết rằng khoảng cách từ A đến cạnh SC = a.Tính thể tích khối chóp SABCD. 	Đs: 
Bài 9: Cho khối chóp SABCD có đáy ABCD là hình thang vuông tại A và B biết AB = BC = a , AD = 2a , 
SA (ABCD) và (SCD) hợp với đáy một góc 60o Tính thể thích khối chóp SABCD. 	Đs: 
Bài 10 :Cho khối chóp SABCD có đáy ABCD là nửa lục giác đều nội tiếp trong nửa đường tròn đường kính AB = 2R biết (SBC) hợp với đáy ABCD một góc 45o.Tính thể tích khối chóp SABCD.	Đs: 
 Dạng 2 : Khối chóp có một mặt bên vuông góc với đáy
Ví dụ 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáyABCD, 
 1) Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AB.
2) Tính thể tích khối chóp SABCD.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) H là trung điểm của AB. Chứng minh SH (ABCD) ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của ABCD bằng công thức nào ? 
*) Tìm h = SH qua tam giác nào bởi công thức gì ?
Lời giải:
Gọi H là trung điểm của AB.
 đều 
mà 
Vậy H là chân đường cao của khối chóp.
Ta có tam giác SAB đều nên SA =
suy ra 
Ví dụ 2: Cho tứ diện ABCD có ABC là tam giác đều ,BCD là tam giác vuông cân tại D , (ABC)(BCD) và AD hợp với (BCD) một góc 60o .Tính thể tích tứ diện ABCD.
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc[AD,(BCD)] = ? Tìm hình chiếucủa AD trên (BCD) ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
*) Tìm diện tích B của BCD bằng công thức nào ? 
*) Tìm h = AH qua tam giác nào bởi công thức gì ?
Lời giải:
Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH(BCD) , mà (ABC) (BCD) AH .
 Ta có AHHDAH = AD.tan60o =
& HD = AD.cot60o =
BC = 2HD = suy ra
 V = 
Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cóBC = a. Mặt bên SAC vuông góc với đáy, các mặt bên còn lại đều tạo với mặt đáy một góc 450.
a. Chứng minh rằng chân đường cao khối chóp trùng với trung điểm cạnh AC.
 b. Tính thể tích khối chóp SABC.
Phân tích đề bài để dựng hình :
*) Dựng tam giác ABC và SAC dựa vào (SAC)(ABC) ? . 
Phân tích yêu cầu của đề bài ra các yêu cầu nhỏ:
 *) Xác định góc[(SAB),(ABC)] = ? và góc[(SBC),(ABC)] = ? 
 *) So sánh tam giác SHI và SHJ cho gì ? Suy ra AH là gì của tam giác ABC ?
 *) Phân tích V= B.h để tìm B và h trong hình là các đối tượng nào ? 
 *) Tìm diện tích B của ABC bằng công thức nào ? 
 *) Tìm h = SH qua các tam giác nào bởi tích chất gì ?
Lời giải:
 a) Kẽ SH BC vì mp(SAC)mp(ABC) nên SHmp(ABC). 
 Gọi I, J là hình chiếu của H trên AB và BC SIAB, SJBC, theo giả thiết 
 Ta có: nên BH là đường phân giác của ừ đó suy ra H là trung điểm của AC.
b) HI = HJ = SH =VSABC=
BÀI TẬP TỰ RÈN LUYỆN
Bài 1: Cho hình chóp SABC có đáy ABC đều cạnh a, tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với (ABC).
1) Chứng minh chân đường cao của chóp là trung điểm của BC.
2) Tính thể tích khối chóp SABC. 	 Đs: 
Bài 2: Cho hình chóp SABC có đáy ABC vuông cân tại A với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích c

File đính kèm:

  • docchuyen_de_on_thi_tot_nghiep_trung_hoc_pho_thong_mon_toan_chu.doc