Chuyên đề Phương trình quy về phương trình bậc hai
Bạn đang xem nội dung tài liệu Chuyên đề Phương trình quy về phương trình bậc hai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề phương trình quy về phương trình bậc hai Bài 1: Tìm m để phương trình x4 + mx2 + 2m – 4 = 0 có nghiệm. Bài 2: Tìm m để phương trình có nghiệm. Bài 3: Tìm m để phương trình x3 – m(x+1) + 1 = 0 có đúng hai nghiệm phân biệt. Bài 4: Tìm m để phương trình có nghiệm duy nhất. Bài 5: Tìm m để phương trình x(x – 2)(x + 2)(x + 4) = m có 4 nghiệm phân biệt. Bài 6: Tìm m để phương trình x4 – 2(m + 1)x2 + 2m + 1 = 0 có 4 nghiệm x1, x2, x3, x4 ( x1 < x2 < x3 < x4 ) thoả mãn điều kiện x4 – x3 = x3 – x2 = x2 – x1 . Bài 7: Tìm m để phương trình có nghiệm duy nhất. Bài 8: Tìm m để phương trình có nghiệm. Bài 9: Tìm m để phương trình có 3 nghiệm phân biệt. Bài 10: Tìm m để phương trình sau có nghiệm. a) . b) c) . Bài 11: Cho phương trình: . Tìm m để phương trình a) Có 4 nghiệm phân biệt. b) Có 3 nghiệm phân biệt. c) Có 2 nghiệm phân biệt. d) Vô nghiệm. Bài 12: Bài 6: Tìm m để phương trình có 4 nghiệm x1, x2, x3, x4 ( x1 < x2 < x3 < x4 ) thoả mãn điều kiện x4 – x3 = x3 – x2 = x2 – x1 . a) . b) Bài 13: Tìm m để phương trình có 4 nghiệm và khi biểu diễn bốn nghiệm đó ( từ nhỏ đến lớn) trên trục số bởi các điểm A, B, C, D thì AB = BC = CD. Bài 14: CMR: phương trình sau luôn có hai nghiệm với mọi giá trị của m. Bài 15: Tìm m để phương trình có nghiệm. Bài 16: Tìm m để phương trình có nghiệm duy nhất: a) b) Bài 17: Cho phương trình: Tìm a để nghiệm của phương trình: a) Đạt GTNN. b) Đạt GTLN. Bài 18: Cho phương trình: Tìm GTLN mà nghiệm của phương trình có thể đạt được. Bài 19: Cho phương trình: với a, b, c là các số nguyên. Gọi x0 là nghiệm hữu tỉ. Chứng tỏ x0 là số nguyên và c chia hết cho x0. Bài 20: Tìm m để phương trình có nghiệm. Bài 21: Cho bd < 0 và ad = bc . Hãy giải phương trình: Bài 22: Chứng minh rằng phương trình: luôn có 3 nghiệm. Bài 23: Giải phương trình: a) b) Bài 24: Tìm m để phương trình Có 4 nghiệm phân biệt. Bài 25: Cho phương trình: với adGọi x là nghiệm của phương trình; gọi và . Chứng minh rằng: Bài 26: Cho phương trình: a) Có 4 nghiệm phân biệt. b) Có 3 nghiệm phân biệt c) Có 2 nghiệm phân biệt d) Có 1 nghiệm duy nhất. e) Vô nghiệm. Bài 27: Cho phương trình: a) Có 2 nghiệm. b) Có 1 nghiệm c). Vô nghiệm. Bài 28: Cho phương trình: a) Giải phương trình khi m = 5. b) Tìm m để phương có 4 nghiệm phân biệt. Bài 29: Tìm b sao cho phương trình: có không ít hơn hai nghiệm âm khác nhau. Bài 30: Tìm a,b sao cho phương trình: có hai nghiệm kép phân biệt. Bài 31: Tìm m sao cho phương trình: có 4 nghiệm phân biệt. Bài 32: Cho phương trình: Tìm m để phương trình có ít nhất một nghiệm. Bài 33: Cho phương trình: Tìm điều kiện của a, b, c để phương trình có nghiệm. Bài 34: Tìm m để phương trình: có nghiệm. Bài 35: Biết phương trình: có nghiệm. CMR a2 > 2. Bài 36: Biết phương trình: có nghiệm. CMR a2 +(b -2)2> 3. Bài 37: Chứng minh rằng: Nếu phương trình thì 5( a2+b2) Bài 38: Giả sử phương trình: có nghiệm. Hãy tìm GTNN của P = a2 + b2 + c2. Bài 39: : Cho phương trình: Tìm m để a) Có nghiệm duy nhất. b) Có 2 nghiệm phân biệt c). Có 3 nghiệm phân biệt. d) Có 4 nghiệm phân biệt. Bài 40: Tìm m để phương trình: Có 4 nghiệm phân biệt Bài 41: Cho phương trình: . Xác định m để phương trình có 4 nghiệm phân biệt lập thành cấp số cộng. Bài 42: : Cho phương trình: Tìm m để a) Có nghiệm duy nhất. b) Có 2 nghiệm phân biệt c). Có 3 nghiệm phân biệt. d) Có 4 nghiệm phân biệt. Bài 43: Cho phương trình: Tìm m để phương trình a) Có 4 nghiệm phân biệt thoả mãn b) có 4 nghiệm phân biệt lập thành cấp số cộng. Bài 44: Cho phương trình: Tìm m để phương trình a) Có 2 nghiệm phân biệt. b) Có 4 nghiệm phân biệt thoả mãn Bài 45: Giả sử phương trình: x4 + ax2 + b = 0 có 4 nghiệm phân biệt lập thành cấp số cộng. CMR: 9a2 – 100b = 0. Bài 46: Cho phương trình: a) Giải phương trình khi m = - ẵ. b) Tìm m để phương trình có nghiệm. Bài 47: Giải và biện luận phương trình: Bài 48: Cho phương trình: a) Giải phương trình khi m = 5. b) Tìm m để phương trình có nghiệm. Bài 49: Cho phương trình : . a) Giải phương trình khi m = -1. b) Tìm m để phương trình có đúng 2 nghiệm phân biệt. c) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 50: Cho phương trình: a) Giải phương trình khi m = 3. b) Tìm m để phương trình có đúng 2 nghiệm phân biệt. c) Tìm m để phương trình có 4 nghiệm phân biệt thuộc khoảng [-2, 2 ]. Bài 51: Cho phương trình: a) Giải phương trình khi m = 9. b) Tìm m để phương trình vô nghiệm. c) Tìm m để phương trình có đúng 1 nghiệm. d) Tìm m để phương trình có 2 nghiệm phân biệt. e) Tìm m để phương trình có 3 nghiệm phân biệt. f) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 52: Cho phương trình: a) Giải phương trình khi m = 9. b) Tìm m để phương trình vô nghiệm. c) Tìm m để phương trình có đúng 1 nghiệm. d) Tìm m để phương trình có 2 nghiệm phân biệt. e) Tìm m để phương trình có 3 nghiệm phân biệt. f) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 53: Cho phương trình: a) Giải phương trình với m = 1. b) Tìm m để phương trình có 2 nghiệm phân biệt thuộc khoảng (-3, -1 ). Bài 54: Cho phương trình: a) Giải phương trình với m = 2. b) Tìm m để phương trình có 2 nghiệm phân biệt thuộc khoảng (-2, -1 ). Bài 55: Cho phương trình: a) Giải phương trình khi m = -1. b) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 56: Tìm m để phương trình: có nghiệm. Bài 57: Giải và biện luận phương trình: với a khác 0. Bài 58: Cho phương trình: . a) Giải phương trình khi m = 1. b) Tìm m để phương trình vô nghiệm. c) Tìm m để phương trình có đúng 1 nghiệm. d) Tìm m để phương trình có 2 nghiệm phân biệt. e) Tìm m để phương trình có 3 nghiệm phân biệt. f) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 59: Cho phương trình: . a) Giải phương trình khi m = 1. b) Tìm m để phương trình vô nghiệm. c) Tìm m để phương trình có đúng 1 nghiệm. d) Tìm m để phương trình có 2 nghiệm phân biệt. e) Tìm m để phương trình có 3 nghiệm phân biệt. f) Tìm m để phương trình có 4 nghiệm phân biệt. Bài 60: Cho phương trình: a) Giải phương trình khi m = -5. b) Tìm m để phương trình có nghiệm. Bài 61: Cho phương trình: . a) Giải phương trình với m = 1 . b) Giải và biện luận phương trình theo m. Bài 62: Giải và biện luận phương trình: a)0. b) .
File đính kèm:
- Chuyen de BDHSG phuong trinh bac cao.doc