Công thức và phương trình lượng giác tiếng anh
Bạn đang xem nội dung tài liệu Công thức và phương trình lượng giác tiếng anh, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trigonometric Identities and Equations I. Fundamental Trigonometric Identities A. Reciprocal identities 1. θθ cos 1sec = 2. θθ sin 1csc = 3. θθ tan 1cot = B.Quotient identities 1. θ θθ cos sintan = 2. . θ θθ sin coscot = C. Pythagorean identities 1. 2. 3. 1cossin 22 =+ θθ θθ 22 sec1tan =+ θθ 22 csccot1 =+ D. Sum and difference identities 1. φθφθφθ sincoscossin)sin( ±=± 2. φθφθφθ sinsincoscos)cos( m=± 3. φθ φθφθ tantan1 tantan)tan( m ±=± E. Double angle identities 1. θθθ cossin22sin = 2. 1cos2sin21sincos2cos 2222 −=−=−= θθθθθ 3. θ θθ 2tan1 tan22tan −= F. Half angle identities 1. 2 cos1 2 sin 2 θθ −=⎟⎠ ⎞⎜⎝ ⎛ 2. 2 cos1 2 cos2 θθ +=⎟⎠ ⎞⎜⎝ ⎛ 3. θ θθ cos1 cos1 2 tan2 + −=⎟⎠ ⎞⎜⎝ ⎛ 1 G. Miscellaneous identities 1. θθ sin)sin( −=− 2. θθ cos)cos( =− 3. θθ tan)tan( −=− 4. ⎟⎠ ⎞⎜⎝ ⎛⎟⎠ ⎞⎜⎝ ⎛ ±=± 2 cos 2 sin2sinsin ϕθϕθϕθ m 5. ⎟⎠ ⎞⎜⎝ ⎛ −⎟⎠ ⎞⎜⎝ ⎛ +=+ 2 cos 2 cos2coscos ϕθϕθϕθ 6. ⎟⎠ ⎞⎜⎝ ⎛ −⎟⎠ ⎞⎜⎝ ⎛ +−=− 2 sin 2 sin2coscos ϕθϕθϕθ 7. )sin( 2 1)sin( 2 1cossin ϕθϕθϕθ −++= 8. )sin( 2 1)sin( 2 1sincos ϕθϕθϕθ −−+= 9. )cos( 2 1)cos( 2 1coscos ϕθϕθϕθ −++= 10. )cos( 2 1)cos( 2 1sinsin ϕθϕθϕθ +−−= 11. θ θ θ θθ sin cos1 cos1 sin 2 tan −=+=⎟⎠ ⎞⎜⎝ ⎛ H. Useful suggestions for proving trigonometric identities 1. Avoid aimless transformations. Any transformation that is made in one of the members should lead in some way to the form of the other. 2. Start with the more complicated member of the identity and transform it into the form of the simpler member. 3. Where possible, express different functions in terms of the same function. 4. It is often useful to express all functions in terms of sines and cosines, or in terms of tangents and secants. 2 5. As a rule, trigonometric functions of a double angle, a half angle, or the sums and differences of angles should be expressed in terms of functions of the single angle. 6. Simplify expressions by utilizing basic identities and combining like terms. 7. Simplify fractions. For example, transform complex fractions into simple fractions or divide the terms of a fraction by the common factors. I. Examples 1. Using trigonometric identities and fundamental trigonometric function values, find each of the following: (a) 2 32 4 32 2 2 31 2 60cos1 2 30sin15sin −=−=−=−=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= ooo (b) −⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛=−=+= 2 3 2 230sin45sin30cos45cos)3045cos(75cos ooooooo 4 26 2 1 2 2 −=⎟⎠ ⎞⎜⎝ ⎛ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ (c) 2 130sin)]15(2sin[15cos15sin2 === oooo (d) 32 32 1 2 31 2 1 30cos1 30sin 2 30tan15tan −=+=+ =+=⎟ ⎟ ⎠ ⎞ ⎜⎜⎝ ⎛= o ooo (e) =−++= )5.75.37cos( 2 1)5.75.37cos( 2 15.7cos5.37cos oooooo 4 32 2 3 2 1 2 2 2 130cos 2 145cos 2 1 +=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛⎟⎠ ⎞⎜⎝ ⎛+⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛⎟⎠ ⎞⎜⎝ ⎛=+ oo 3 2. Prove: xx x x tansin csc sec1 +=+ ( )( ) +=+=+=+=+ xxxx x xx x x xx x sin1 sin cos 1sin sin 1 cos 1 sin csc sec csc 1 csc sec1 xx x x tansin cos sin += 3. Prove: xx x x x 2sin 2 cos sin sin cos =+ ==+=+=+ xxxx xx xx xx xx xx x x x x cossin 1 cossin sincos cossin )(sinsin cossin )(coscos cos sin sin cos 22 xxx 2sin 2 cossin2 2 = 4. Prove: yx yx yx yx tantan tantan )sin( )sin( − +=− + = ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ + = − + =− + ))(cos(cos cos sin cos sin ))(cos(cos cos sin cos sin cos sin cos sin cos sin cos sin tantan tantan yx y y x x yx y y x x y y x x y y x x yx yx )sin( )sin( cossincossin cossincossin yx yx xyyx xyyx − +=− + II. Solution of Trigonometric Equations A. Useful suggestions for solving trigonometric equations 1. Simplify the equation by clearing fractions, removing parentheses, combining like terms, and removing radicals. 2. Express functions of a double angle, a half angle, or the sums and differences of angles in terms of functions of the single angle; then express the different functions of the single angle in terms of a single function of that angle. 4 3. Solve the resulting equation, whether it be linear or quadratic in nature, for all the values of the angle in the given domain. 4. Checks the results by substituting into the original equation. B. Examples 1. Solve for x in the interval :)2,0[ π 03sin2 =+x 2 3sin3sin203sin2 −=⇒−=⇒=+ xxx . Get the reference angle ).60( 32 3sin 1 oπ=⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛− Since is negative, x lies in the 3xsin rd and 4th quadrants. Thus, )240( 3 4)60( 3 )180( ooo πππ =+=x or −= )360(2 oπx )300( 3 5)60( 3 oo ππ = . Both of these values do check. 2. Solve for x in the interval :)2,0[ π xxx tancoscos = ⇒=−⇒=−⇒= 0)tan1(cos0tancoscostancoscos xxxxxxxx or 0cos =x 0cos0tan1 =⇒=− xx or 1tan =x . 2 0cos π=⇒= xx ( )90o or ).270( 2 3 oπ=x ⇒=1tan x reference angle = )45( 4 )1(tan 1 oπ=− . Since xtan is positive, x lies in the 1st and 3rd quadrants. Thus, )45( 4 oπ=x or x = ).225( 4 5)45( 4 )180( ooo πππ =+ Thus, the solutions are 2 3, 4 5, 2 , 4 ππππ orx = and they all check. 3. Solve for x in the interval :)2,0[ π 13cos2 =x 2 13cos13cos2 =⇒= xx . Since π20 <≤ x , π60 <≤ x . The reference angle for 3x is )60( 32 1cos 1 oπ=⎟⎠ ⎞⎜⎝ ⎛− and is positive in the 1xcos st and 4th quadrants. Thus, )60( 3 3 oπ=x , )300( 3 5)60( 3 )360(23 ooo πππ =−=x , += )360(23 oπx 5 )420( 3 7)60( 3 oo ππ = , )660( 3 11)60( 3 )720(43 ooo πππ =−=x , += )720(43 oπx )780( 3 13)60( 3 oo ππ = , and ⇒=−= )1020( 3 17)60( 3 )1080(63 ooo πππx 9 17, 9 13, 9 11, 9 7, 9 5, 9 ππππππ orx = and they all check. 4. Solve for x in the interval :)2,0[ π xx cos2cos = −⇒=−−⇒=−⇒= xxxxxxx 22 cos20cos)1cos2(0cos2coscos2cos 01cos20)1)(cos1cos2(01cos =+⇒=−+⇒=− xxxx or ⇒=− 01cos x 2 1cos −=x or . 1cos =x ⇒−= 2 1cos x reference angle is 32 1cos 1 π=⎟⎠ ⎞⎜⎝ ⎛− and x lies in the 2nd or 3rd quadrants since is negative xcos 3 2 3 πππ =−=⇒ x or 3 4 3 πππ =+=x . 01cos =⇒= xx . Thus, 3 4, 3 2,0 ππ orx = and they all check. 5. Solve for x in the interval :)2,0[ π xx cossin = ⇒=⇒=⇒= 1tan1 cos sincossin x x xxx reference angle is 4 )1(tan 1 π=− and x lies in the 1st or 3rd quadrants since xtan is positive 4 π=⇒ x or += πx 4 5 4 ππ = and they both check. 6 Practice Sheet – Trigonometric Identities and Equations I. Verify the following identities: (1) xx x x tansin csc sec1 +=+ (2) x xx 2sin1 2cos 4 tan −=⎟⎠ ⎞⎜⎝ ⎛ +π (3) x xx sin2 sec2csc = (4) x xx sec2 1sec 2 sin 2 −=⎟⎠ ⎞⎜⎝ ⎛ (5) x xx xx 3tan 4sin2sin 2cos4cos =− − II. Solve the following equations for all values of x in the interval [0, π2 ) : (1) (2) 3sin54sin3 −=− xx xxx cos3cossin2 = (3) (4) 01cos4 2 =−x 3sin3cos2 2 =+ xx (5) 1cossin =− xx Solution Key for Trigonometric Identities and Equations I. (1) xxx x x x xx x x xx x tansin 1 sin cos 1sin sin 1 cos 1 sin csc sec csc 1 csc sec1 +=⎟⎠ ⎞⎜⎝ ⎛⎟⎠ ⎞⎜⎝ ⎛+=+=+=+ (2) ( )( ) =−+=− + =− +=− +=⎟⎠ ⎞⎜⎝ ⎛ + xx xx x x x x x x x x x sincos sincos cos sin1 cos sin1 tan1 tan1 tan4tan1 tan4tan 4 tan π ππ x x xxxx xx xxxx xxxx 2sin1 2cos sinsincos2cos sincos )sin)(cossin(cos )sin)(cossin(cos 22 22 −=+− −=−− −+ 7 (3) x xx xxxxxx x sin2 secsec sin2 1 cos 1 sin2 1 cossin2 1 2sin 12csc =⋅=⋅=== (4) x x x x x x x x x xx sec2 1sec sec2 cos cos cos 1 cos 2 cos cos1 2 cos1 2 sin2 −= − = − =−=⎟⎠ ⎞⎜⎝ ⎛ (5) =− −= ⎟⎠ ⎞⎜⎝ ⎛ +⎟⎠ ⎞⎜⎝ ⎛ − ⎟⎠ ⎞⎜⎝ ⎛ −⎟⎠ ⎞⎜⎝ ⎛ +− =− − xx xx xxxx xxxx xx xx 3cos)sin(2 sin3sin2 2 42cos 2 42sin2 2 24sin 2 24sin2 4sin2sin 2cos4cos x x x xx xx 3tan 3cos 3sin 3cossin2 sin3sin2 ==− − II. (1) 6 11, 6 7 2 1sin3sin54sin3 ππ=⇒−=⇒−=− xxxx and they both check. (2) 2 3sincos3cossin2 =⇒= xxxx or 3 2, 3 0cos ππ=⇒= xx or 2 3, 2 ππ=x and they all check. (3) 3 5, 3 4, 3 2, 32 1cos01cos4 2 ππππ=⇒±=⇒=− xxx and they all check. (4) ⇒=+−⇒=+−⇒=+ 01sin3sin23sin3)sin1(23sin3cos2 222 xxxxxx 2 1sin0)1)(sin1sin2( =⇒=−− xxx or 6 5, 6 1sin ππ=⇒= xx or 2 π=x and they all check. (5) ( ) ( ) +=⇒+=⇒+=⇒=− 1sincos1sincos1sin1cossin 222 xxxxxxx ⇒=+⇒++=−⇒+ 0cos2cos2coscos21cos1coscos2 2222 xxxxxxx 0cos0)1(coscos2 =⇒=+ xxx or 2 3, 2 1cos ππ=⇒−= xx or π=x . 2 π=x or π=x are the solutions because they both check. However, 2 3π=x does not check in the original equation and thus is not a solution. [Note: 2 3π=x is an extraneous root created by squaring both sides of the original equation.] 8
File đính kèm:
- cong thuc va phuong trinh luong giac tieng anh.pdf