Đáp án – thang điểm đềthi tuyển sinh đại học năm 2010 môn: toán; khối d
Bạn đang xem nội dung tài liệu Đáp án – thang điểm đềthi tuyển sinh đại học năm 2010 môn: toán; khối d, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trang 1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối D (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) • Tập xác định: R. • Sự biến thiên: - Chiều biến thiên: 'y = − 4x3 − 2x = − 2x(2x2 + 1); 'y (x) = 0 ⇔ x = 0. 0,25 - Hàm số đồng biến trên khoảng (−∞; 0); nghịch biến trên khoảng (0; +∞). - Cực trị: Hàm số đạt cực đại tại x = 0; yCĐ = 6. - Giới hạn: lim x y→−∞ = limx y→+∞ = − ∞. 0,25 - Bảng biến thiên: 0,25 • Đồ thị: 0,25 2. (1,0 điểm) Do tiếp tuyến vuông góc với đường thẳng y = 1 6 x − 1, nên tiếp tuyến có hệ số góc bằng – 6. 0,25 Do đó, hoành độ tiếp điểm là nghiệm của phương trình − 4x3 − 2x = − 6 0,25 ⇔ x = 1, suy ra tọa độ tiếp điểm là (1; 4). 0,25 I (2,0 điểm) Phương trình tiếp tuyến: y = − 6(x − 1) + 4 hay y = − 6x + 10. 0,25 1. (1,0 điểm) Phương trình đã cho tương đương với: 2sinxcosx − cosx − (1 − 2sin2x) + 3sinx − 1 = 0 0,25 ⇔ (2sinx − 1)(cosx + sinx + 2) = 0 (1). 0,25 Do phương trình cosx + sinx + 2 = 0 vô nghiệm, nên: 0,25 II (2,0 điểm) (1) ⇔ sinx = 1 2 ⇔ x = 6 π + k2π hoặc x = 5 6 π + k2π ( k ∈ Z). 0,25 'y + 0 − y 6 − ∞ x −∞ 0 +∞ − ∞ y x 6 2− 2 O Trang 2/4 Câu Đáp án Điểm 2. (1,0 điểm) Điều kiện: x ≥ − 2. Phương trình đã cho tương đương với: ( )( )32 24 4 42 2 2 2 0xx x+ −− − = . 0,25 • 24x − 24 = 0 ⇔ x = 1. 0,25 • 2 22 x+ − 3 42x − = 0 ⇔ 2 2x + = x3 − 4 (1). Nhận xét: x ≥ 3 4 . 0,25 Xét hàm số f(x) = 2 2x + − x3 + 4, trên )3 4 ;⎡ +∞⎣ . 'f (x) = 1 2x + − 3x 2 < 0, suy ra f(x) nghịch biến trên )3 4 ;⎡ +∞⎣ . Ta có f(2) = 0, nên phương trình (1) có nghiệm duy nhất x = 2. Vậy phương trình đã cho có hai nghiệm: x = 1; x = 2. 0,25 I = 1 32 ln d e x x x x ⎛ ⎞−⎜ ⎟⎝ ⎠∫ = 1 2 ln d e x x x∫ − 1 ln3 d e x x x∫ . 0,25 • Đặt u = lnx và dv = 2xdx, ta có: du = dx x và v = x2. 1 2 ln d e x x x∫ = ( )2 1ln ex x − 1 d e x x∫ = e2 − 2 1 2 e x = 2 1 2 e + . 0,25 • 1 ln d e x x x∫ = ( )1 ln d ln e x x∫ = 2 1 1 ln 2 e x = 1 2 . 0,25 III (1,0 điểm) Vậy I = 2 2 e − 1. 0,25 • M là trung điểm SA. AH = 2 4 a , SH = 2 2SA AH− = 14 4 a . 0,25 HC = 3 2 4 a , SC = 2 2SH HC+ = a 2 ⇒ SC = AC. Do đó tam giác SAC cân tại C, suy ra M là trung điểm SA. 0,25 • Thể tích khối tứ diện SBCM. M là trung điểm SA ⇒ SSCM = 12 SSCA ⇒ VSBCM = VB.SCM = 12 VB.SCA = 1 2 VS.ABC 0,25 IV (1,0 điểm) ⇒ VSBCM = 16 SABC.SH = 3 14 48 a . 0,25 Điều kiện: − 2 ≤ x ≤ 5. Ta có (− x2 + 4x + 21) − (− x2 + 3x + 10) = x + 11 > 0, suy ra y > 0. 0,25 y2 = (x + 3)(7 − x) + (x + 2)(5 − x) − 2 ( 3)(7 )( 2)(5 )x x x x+ − + − = ( )2( 3)(5 ) ( 2)(7 )x x x x+ − − + − + 2 ≥ 2, suy ra: 0,25 y ≥ 2 ; dấu bằng xảy ra khi và chỉ khi x = 1 3 . 0,25 V (1,0 điểm) Do đó giá trị nhỏ nhất của y là 2 . 0,25 S C D B A M H Trang 3/4 Câu Đáp án Điểm 1. (1,0 điểm) Đường tròn ngoại tiếp tam giác ABC có phương trình: (x + 2)2 + y2 = 74. Phương trình AH: x = 3 và BC ⊥ AH, suy ra phương trình BC có dạng: y = a (a ≠ − 7, do BC không đi qua A). Do đó hoành độ B, C thỏa mãn phương trình: (x + 2)2 + a2 = 74 ⇔ x2 + 4x + a2 − 70 = 0 (1). 0,25 Phương trình (1) có hai nghiệm phân biệt, trong đó có ít nhất một nghiệm dương khi và chỉ khi: | a | < 70 . Do C có hoành độ dương, nên B(− 2 − 274 a− ; a) và C(− 2 + 274 a− ; a). 0,25 AC ⊥ BH, suy ra: .AC BHJJJG JJJG = 0 ⇔ ( )274 5a− − ( )274 5a− + + (a + 7)(− 1 − a) = 0 ⇔ a2 + 4a − 21 = 0 0,25 ⇔ a = − 7 (loại) hoặc a = 3 (thỏa mãn). Suy ra C(− 2 + 65 ; 3). 0,25 2. (1,0 điểm) Ta có vectơ pháp tuyến của (P) và (Q) lần lượt là Pn G = (1; 1; 1) và Qn G = (1; − 1; 1), suy ra: ,P Qn n⎡ ⎤⎣ ⎦ G G = (2; 0; −2) là vectơ pháp tuyến của (R). 0,25 Mặt phẳng (R) có phương trình dạng x − z + D = 0. 0,25 Ta có d(O,(R)) = , 2 D suy ra: 2 D = 2 ⇔ D = 2 2 hoặc D = 2 2− . 0,25 VI.a (2,0 điểm) Vậy phương trình mặt phẳng (R): x − z + 2 2 = 0 hoặc x − z − 2 2 = 0. 0,25 Gọi z = a + bi, ta có: 2 2z a b= + và z2 = a2 − b2 + 2abi. 0,25 Yêu cầu bài toán thỏa mãn khi và chỉ khi: 2 2 2 2 2 0 a b a b ⎧ + =⎪⎨ − =⎪⎩ 0,25 ⇔ 2 2 1 1. a b ⎧ =⎪⎨ =⎪⎩ 0,25 VII.a (1,0 điểm) Vậy các số phức cần tìm là: 1 + i; 1 − i; − 1 + i; − 1 − i. 0,25 1. (1,0 điểm) Gọi tọa độ H là (a; b), ta có: 2 2 2( 2)AH a b= + − và khoảng cách từ H đến trục hoành là | b |, suy ra: a2 + (b − 2)2 = b2. 0,25 Do H thuộc đường tròn đường kính OA, nên: a2 + (b − 1)2 = 1. 0,25 Từ đó, ta có: 2 2 2 4 4 0 2 0. a b a b b ⎧ − + =⎪⎨ + − =⎪⎩ Suy ra: (2 5 2; 5 1)H − − hoặc ( 2 5 2; 5 1)H − − − . 0,25 VI.b (2,0 điểm) Vậy phương trình đường thẳng ∆ là ( 5 1) 2 5 2 0x y− − − = hoặc ( 5 1) 2 5 2 0x y− + − = . 0,25 I • A B C H O H y x A P Q R • O Trang 4/4 Câu Đáp án Điểm 2. (1,0 điểm) Ta có: + M ∈ ∆1, nên M(3 + t; t; t). + ∆2 đi qua A(2; 1; 0) và có vectơ chỉ phương v G = (2; 1; 2). 0,25 Do đó: AM JJJJG = (t + 1; t − 1; t); ,v AM⎡ ⎤⎣ ⎦ G JJJJG = (2 − t; 2; t − 3). 0,25 Ta có: d(M, ∆2) = ,v AM v ⎡ ⎤⎣ ⎦ G JJJJG G = 22 10 17 3 t t− + , suy ra: 22 10 17 3 t t− + = 1 0,25 ⇔ t2 − 5t + 4 = 0 ⇔ t = 1 hoặc t = 4. Do đó M(4; 1; 1) hoặc M(7; 4; 4). 0,25 Điều kiện: x > 2, y > 0 (1). 0,25 Từ hệ đã cho, ta có: 2 4 2 0 2 x x y x y ⎧ − + + =⎪⎨ − =⎪⎩ 0,25 ⇔ 2 3 0 2 x x y x ⎧ − =⎪⎨ = −⎪⎩ ⇔ 0 2 x y =⎧⎨ = −⎩ hoặc 3 1. x y =⎧⎨ =⎩ 0,25 VII.b (1,0 điểm) Đối chiếu với điều kiện (1), ta có nghiệm của hệ là (x; y) = (3; 1). 0,25 ------------- Hết ------------- M ∆2 ∆1 d =1 H
File đính kèm:
- DaToanDCt_DH_K10.pdf