Đề 4 (học sinh giỏi toán 12)

doc1 trang | Chia sẻ: bobo00 | Lượt xem: 808 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề 4 (học sinh giỏi toán 12), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 4 (Học sinh giỏi Toán 12)
Câu I: Cho hàm số 
1,/ Với m = 3 hãy xác định các tiệm cận về bên phải và về bên trái của đồ thị
2,/ Tìm m để hàm số đạt cực đại tại điểm xo < -2
Câu II: 1./ Giải phương trình : 	 2,/ Tính 
Câu III: Hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, đường cao SO = h.
1,/ Tính theo a, h bán kính R của nặt cầu ngoại tiếp hình chóp S.ABCD
2,/ Tính diện tích toàn phần hình chóp S.ABCD; từ đó tính bán kính r của mặt cầu nội tiếp hình chóp ( theo a và h )
Câu IV: Cho (H): , gọi (d) là đường thẳng qua O có hệ số góc k, (d') là đường thẳng qua O và vuông góc với (d).
1) Tìm k để (d) và (d') cắt (H) tại 4 điểm A,B,C,D
2) Khi đó tính diện tích tứ giác ABCD, Tìm k để diện tích đó nhỏ nhât.
Câu V: Cho các số thực dương a, b, c thoả mãn điều kiện . Chứng minh rằng: 
ĐỀ 4 (Học sinh giỏi Toán 12)
Câu I: Cho hàm số 
1,/ Với m = 3 hãy xác định các tiệm cận về bên phải và về bên trái của đồ thị
2,/ Tìm m để hàm số đạt cực đại tại điểm xo < -2
Câu II: 1./ Giải phương trình : 	 2,/ Tính 
Câu III: Hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a, đường cao SO = h.
1,/ Tính theo a, h bán kính R của nặt cầu ngoại tiếp hình chóp S.ABCD
2,/ Tính diện tích toàn phần hình chóp S.ABCD; từ đó tính bán kính r của mặt cầu nội tiếp hình chóp ( theo a và h )
Câu IV: Cho (H): , gọi (d) là đường thẳng qua O có hệ số góc k, (d') là đường thẳng qua O và vuông góc với (d).
1) Tìm k để (d) và (d') cắt (H) tại 4 điểm A,B,C,D
2) Khi đó tính diện tích tứ giác ABCD, Tìm k để diện tích đó nhỏ nhât.
Câu V: Cho các số thực dương a, b, c thoả mãn điều kiện . Chứng minh rằng: 

File đính kèm:

  • dochsgtoan12d6.doc