Đề cương chương I Đại số 11
Bạn đang xem nội dung tài liệu Đề cương chương I Đại số 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ CƯƠNG CHƯƠNG I ĐẠI SỐ 11 I. TẬP XÁC ĐỊNH, TÍNH CHẴN – LẺ, GTLN-GTNN Tìm tập xác định và tập giá trị của các hàm số sau: a/ b/ c/ d/ e/ f/ g/ y = Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: a/ y = b/ c/ d/ e/ f/ g/ y = sinx + cosx h/ y = i/ y = Xét tính chẵn – lẻ của hàm số: a/ y = sin2x b/ y = 2sinx + 3 c/ y = sinx + cosx d/ y = tanx + cotx e/ y = sin4x f/ y = sinx.cosx g/ y = h/ y = i/ y = II. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN Giải các phương trình: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) cos(2x + 250) = Giải các phương trình: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) III. PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC Giải các phương trình sau: 1) 2sin2x + 5cosx + 1 = 0 2) 4sin2x – 4cosx – 1 = 0 3) 4cos5x.sinx – 4sin5x.cosx = sin24x 4) 5) 6) 7) tan2x + cot2x = 2 8) cot22x – 4cot2x + 3 = 0 Giải các phương trình sau: 1) 4sin23x + = 4 2) cos2x + 9cosx + 5 = 0 3) 4cos2(2 – 6x) + 16cos2(1 – 3x) = 13 4) 5) + tan2x = 9 6) 9 – 13cosx + = 0 7) = cotx + 3 8) + 3cot2x = 5 9) cos2x – 3cosx = 10) 2cos2x + tanx = Cho phương trình . Tìm các nghiệm của phương trình thuộc. Cho phương trình : cos5x.cosx = cos4x.cos2x + 3cos2x + 1. Tìm các nghiệm của phương trình thuộc . Giải phương trình : . IV. PHƯƠNG TRÌNH BẬC NHẤT THEO SINX VÀ COSX DẠNG: a sinx + b cosx = c (1) Giải các phương trình sau: 1) 2) 3) 4) 5) 6) Giải các phương trình sau: 1) 2) 3) 4) cosx – 5) sin5x + cos5x = cos13x 6) (3cosx – 4sinx – 6)2 + 2 = – 3(3cosx – 4sinx – 6) Giải các phương trình sau: 1) 3sinx – 2cosx = 2 2) cosx + 4sinx – = 0 3) cosx + 4sinx = –1 4) 2sinx – 5cosx = 5 Giải các phương trình sau: 1) 2sin + sin = 2) Tìm m để phương trình : (m + 2)sinx + mcosx = 2 có nghiệm . Tìm m để phương trình : (2m – 1)sinx + (m – 1)cosx = m – 3 vô nghiệm. V. PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI DẠNG: a sin2x + b sinx.cosx + c cos2x = d (2) Giải các phương trình sau: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) cos2x + 3sin2x + sinx.cosx – 1 = 0 12) 2cos2x – 3sinx.cosx + sin2x = 0 Giải các phương trình sau: 1) sin3x + 2sin2x.cos2x – 3cos3x = 0 2) Tìm m để phương trình : (m + 1)sin2x – sin2x + 2cos2x = 1 có nghiệm. Tìm m để phương trình : (3m – 2)sin2x – (5m – 2)sin2x + 3(2m + 1)cos2x = 0 vô nghiệm . VI. PHƯƠNG TRÌNH ĐỐI XỨNG Giải các phương trình: 1) 2) 3) 4) 5) sinx + cosx – 4sinx.cosx – 1 = 0 6) Giải các phương trình: 1) 2) 5sin2x – 12(sinx – cosx) + 12 = 0 3) 4) cosx – sinx + 3sin2x – 1 = 0 5) sin2x + 6) Giải các phương trình: 1) sin3x + cos3x = 1 + sinx.cosx 2) 2sin2x – VII. PHƯƠNG TRÌNH DẠNG KHÁC Giải các phương trình sau: 1) sin2x = sin23x 2) sin2x + sin22x + sin23x = 3) cos2x + cos22x + cos23x = 1 4) cos2x + cos22x + cos23x + cos24x = Giải các phương trình sau: 1) sin6x + cos6x = 2) sin8x + cos8x = 3) cos4x + 2sin6x = cos2x 4) sin4x + cos4x – cos2x + – 1 = 0 Giải các phương trình sau: 1) 1 + 2sinx.cosx = sinx + 2cosx 2) sinx(sinx – cosx) – 1 = 0 3) sin3x + cos3x = cos2x 4) sin2x = 1 + cosx + cos2x 5) sinx(1 + cosx) = 1 + cosx + cos2x 6) (2sinx – 1)(2cos2x + 2sinx + 1) = 3 – 4cos2x 7) (sinx – sin2x)(sinx + sin2x) = sin23x 8) sinx + sin2x + sin3x = (cosx + cos2x + cos3x) Giải các phương trình sau: 1) 2cosx.cos2x = 1 + cos2x + cos3x 2) 2sinx.cos2x + 1 + 2cos2x + sinx = 0 3) 3cosx + cos2x – cos3x + 1 = 2sinx.sin2x 4) cos5x.cosx = cos4x.cos2x + 3cos2x + 1 Giải các phương trình sau: 1) sinx + sin3x + sin5x = 0 2) cos7x + sin8x = cos3x – sin2x 3) cos2x – cos8x + cos6x = 1 4) sin7x + cos22x = sin22x + sinx Giải các phương trình sau: 1) sin3x + cos3x + = cosx + sin3x 2) 1 + sin2x + 2cos3x(sinx + cosx) = 2sinx + 2cos3x + cos2x
File đính kèm:
- de cuong chuong 1 dai so 11(1).doc