Đề khảo sát chất lượng lớp 12, lần 2 - Năm 2014 môn: Toán; khối: A và A1 - Trường THPT Chuyên
Bạn đang xem nội dung tài liệu Đề khảo sát chất lượng lớp 12, lần 2 - Năm 2014 môn: Toán; khối: A và A1 - Trường THPT Chuyên, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC VINH TRƯỜNG THPT CHUYÊN ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12, LẦN 2 - NĂM 2014 Môn: TOÁN; Khối: A và A1; Thời gian làm bài: 180 phút I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm). Cho hàm số 3 26 3( 2) 4 5y x x m x m có đồ thị ( ),mC với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi 1.m b) Tìm m để trên ( )mC tồn tại đúng hai điểm có hoành độ lớn hơn 1 sao cho các tiếp tuyến tại mỗi điểm đó của ( )mC vuông góc với đường thẳng : 2 3 0.d x y Câu 2 (1,0 điểm). Giải phương trình sin 1 cot 2. 1 cos 1 cos x x x x Câu 3 (1,0 điểm). Giải hệ phương trình 2 4 2 2 ( )( 4 ) 3 0 ( , ). 2 1 1 0 x y x y y y x y x y y y Câu 4 (1,0 điểm). Tính diện tích hình phẳng được giới hạn bởi các đường 3 1 ; 0; 1. (3 1) 3 1 x x x y y x Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, 0120 ,BCD cạnh bên SD vuông góc với mặt phẳng đáy, mặt phẳng (SAB) tạo với mặt phẳng (SBC) một góc 060 . Gọi K là trung điểm của SC. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AD, BK. Câu 6 (1,0 điểm). Giả sử x, y, z là các số thực dương thỏa mãn 2 2 2 1.x y z Tìm giá trị lớn nhất của biểu thức 3 3 3 3 2 2 3 3 . 1 1 24 xy yz x y y z P z x x z II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần a hoặc phần b) a. Theo chương trình Chuẩn Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ ,Oxy cho tam giác ABC có đỉnh (3; 3),A tâm đường tròn ngoại tiếp (2; 1),I phương trình đường phân giác trong góc BAC là 0.x y Tìm tọa độ các đỉnh B, C biết rằng 8 5 5 BC và góc BAC nhọn. Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độ ,Oxyz cho mặt phẳng ( ) : 2 1 0P x y z và các đường thẳng 1 2 3 7 2 1 1 3 : ; : ; : . 2 1 2 1 2 1 1 1 2 x y z x y z x y z d d d Tìm 1 2,M d N d sao cho đường thẳng MN song song với (P) đồng thời tạo với d một góc có 1 cos . 3 Câu 9.a (1,0 điểm). Cho phương trình 28 4( 1) 4 1 0 (1),z a z a với a là tham số. Tìm a để (1) có hai nghiệm 1 2,z z thỏa mãn 1 2 z z là số ảo, trong đó 2z là số phức có phần ảo dương. b. Theo chương trình Nâng cao Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ ,Oxy cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là 3 18 0,x y phương trình đường thẳng trung trực của đoạn thẳng BC là 3 19 279 0,x y đỉnh C thuộc đường thẳng : 2 5 0.d x y Tìm tọa độ đỉnh A biết rằng 0135 .BAC Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độ ,Oxyz cho điểm (4; 4; 5), (2; 0; 1)A B và mặt phẳng ( ) : 3 0.P x y z Tìm tọa độ điểm M thuộc mặt phẳng (P) sao cho mặt phẳng (MAB) vuông góc với (P) và 2 22 36.MA MB Câu 9.b (1,0 điểm). Cho đồ thị 2 2 ( ) : 1 a x ax C y x và đường thẳng : 2 1.d y x Tìm các số thực a để d cắt ( )aC tại hai điểm phân biệt ,A B thỏa mãn ,IA IB với ( 1; 2).I ------------------ Hết ------------------ Ghi chú: 1. BTC sẽ trả bài vào các ngày 19, 20/4/2014. Để nhận được bài thi, thí sinh phải nộp lại phiếu dự thi cho BTC. 2. Kỳ khảo sát chất lượng lần 3 sẽ được tổ chức vào chiều ngày 10 và ngày 11/5/2014. Đăng ký dự thi tại Văn phòng Trường THPT Chuyên từ ngày 19/4/2014. TRƯỜNG ĐẠI HỌC VINH TRƯỜNG THPT CHUYÊN ĐÁP ÁN ĐỀ KHẢO SÁT CHẤT LƯỢNG LỚP 12, LẦN 2 - NĂM 2014 Môn: TOÁN – Khối A1; Thời gian làm bài: 180 phút Câu Đáp án Điểm Câu 1. (2,0 điểm) a) (1,0 điểm) Khi 1m hàm số trở thành 3 26 9 1.y x x x a) Tập xác định: . b) Sự biến thiên: * Giới hạn tại vô cực: Ta có lim x y và lim . x y * Chiều biến thiên: Ta có 2' 3 12 9;y x x 1 1 ' 0 ; ' 0 ; ' 0 1 3. 3 3 x x y y y x x x Suy ra hàm số đồng biến trên mỗi khoảng ; 1 , 3; ; nghịch biến trên khoảng 1; 3 . * Cực trị: Hàm số đạt cực đại tại 1, 3,CĐx y hàm số đạt cực tiểu tại 3, 1.CTx y 0,5 * Bảng biến thiên: c) Đồ thị: 0,5 b) (1,0 điểm) Đường thẳng d có hệ số góc 1 . 2 k Do đó tiếp tuyến của ( )mC vuông góc với d có hệ số góc ' 2.k Ta có 2' ' 3 12 3( 2) 2y k x x m 23 12 4 3 .x x m (1) Yêu cầu bài toán tương đương với phương trình (1) có hai nghiệm phân biệt lớn hơn 1. 0,5 Xét hàm số 2( ) 3 12 4f x x x trên (1; ). Ta có bảng biến thiên: Dựa vào bảng biến thiên ta suy ra phương trình ( ) 3f x m có hai nghiệm phân biệt lớn hơn 1 khi và chỉ khi 5 8 8 3 5 . 3 3 m m Vậy 5 8 . 3 3 m 0,5 Câu 2. (1,0 điểm) Điều kiện: cos 1, sin 0 , .x x x k k Phương trình đã cho tương đương với 2 sin sin cos 1 cos cos 2 sinsin x x x x x xx 2sin cos 1 2sin sin cos cos2 0 (sin cos )(1 cos sin ) 0. x x x x x x x x x x 0,5 x 'y y 1 3 3 1 + – 0 0 + x O 3 y 1 1 3 x ( )f x 1 8 2 5 *) sin cos 0 , 4 x x x k .k *) 21 1 cos sin 0 sin 2 4 2 2 , . x k x x x x k k Đối chiếu điều kiện, ta có nghiệm của phương trình là , 2 , . 4 2 x k x k k 0,5 Câu 3. (1,0 điểm) Điều kiện: 22 1 0.x y Phương trình thứ nhất của hệ tương đương với 2 2 4 2 2( ) 4( ) 3 0 ( )( 3 ) 0.x y x y y y x y y x y y *) 2 0,x y y hay 2.x y y Thay vào phương trình thứ hai của hệ ta được 2 2 2 2 1 1 (ktm) 1 1 0 1 2. y y y y y y y y 2 1 133 0 . 2 y y y Với 1 13 2 y thì 4 13x và với 1 13 2 y thì 4 13.x 0,5 *) 23 0,x y y hay 23 .x y y Thay vào phương trình thứ hai của hệ ta được 2 2 2 21 1 0 1 1y y y y y y y y 2 2 2 2 2 2 1 0 1 0 1. 1 ( 1) ( 1)( 3 3) 0 y y y y y y y y y y y y y Suy ra 2.x Vậy nghiệm (x; y) của hệ là 1 13 1 13 4 13; , 4 13; , 2; 1 . 2 2 0,5 Câu 4. (1,0 điểm) Ta có 3 1 0 3 1 0. (3 1) 3 1 x x x x x Rõ ràng 3 1 0 (3 1) 3 1 x x x với mọi 0; 1 .x Do đó diện tích của hình phẳng là 1 1 0 0 3 1 3 1 d .3 d . (3 1) 3 1 (3 1) 3 1 x x x x x x x S x x 0,5 Đặt 3 1,xt ta có khi 0x thì 2,t khi 1x thì 2t và 23 1.x t Suy ra 3 ln3d 2 d ,x x t t hay 2 d 3 d . ln3 x t tx Khi đó ta có 22 22 3 2 22 2 2 3 2 22 2 2 2 2 2 d 1 d . ln3 ln3 ln3 ln3 t S t t t t tt t 0,5 Câu 5. (1,0 điểm) Gọi .O AC BD Vì 0120BCD nên 060ABC ABC đều cạnh a 3 , . 2 a AC a OD OB Kẻ OH SB tại H. Vì ( )AC SBD nên AC SB ( )SB AHC SB AH và .SB HC 0 0( ), ( ) 60 ( , ) 60SAB SBC AH CH 060AHC hoặc 0120AHC . 0,5 TH 1. 060AHC 0 0 3 30 .cot30 , 2 a AHO OH OA OB vô lý vì OHB vuông tại H. TH 2. 0 0 0120 60 .cot60 2 3 a AHC AHO OH OA 2 2 2 . 3 a BH OB OH Vì 2 tam giác vuông BOH và BSD đồng dạng nên . 3 . 2 2 OH BH OH BD a SD SD BD BH 2 23 3 2. 2. . 4 2 ABCD ABC a a S S Suy ra 3 . 1 2 . . 3 8 S ABCD ABCD a V SD S Vì BC // AD nên (SBC) // AD ( , ) , ( ) .d AD BK d D SBC (1) 0,5 A B C P Q S K O D H Kẻ DP BC tại P, DQ SP tại Q. Vì ( )BC SDP nên ( ).BC DQ DQ SBC (2) Từ tam giác vuông DCP 0 3 .sin60 . 2 a DP DC Từ tam giác vuông . 2 a SDP DQ (3) Từ (1), (2) và (3) suy ra ( , ) . 2 a d AD BK DQ Câu 6. (1,0 điểm) Áp dụng bất đẳng thức Côsi ta có 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 42 2 1 1 1 1 1 1 1 1 . 4 4 2 2 4 2 2 4 8 xy yz xy yz z x z x z y x y x z xy yz x y y z z x z y x y x zz x z y x y x z y y y y y y y y yz xy z x z xz y x y Tiếp tục áp dụng bất đẳng thức Cô si, ta có 3 3 3 3 3 1 ( ) 4 x y y z xy yz nên 33 3 3 3 3 3 3 3 3 ( ) 1 . 44 x y y z xy yz y y z xz x z x Suy ra 3 1 1 1 . 4 8 96 y y y y P z x z x 0,5 Đặt , y y t z x khi đó 0t và 3 1 1 1 . 96 8 4 P t t Xét hàm số 3 1 1 1 ( ) 96 8 4 f t t t với 0.t Ta có 2 1 1 '( ) ; '( ) 0 2, 32 8 f t t f t t vì 0.t Suy ra bảng biến thiên: Dựa vào bảng biến thiên ta có 5 , 12 P dấu đẳng thức xảy ra khi và chỉ khi 2t hay 1 . 3 x y z Vậy giá trị lớn nhất của P là 5 , 12 đạt được khi 1 . 3 x y z 0,5 Câu 7.a (1,0 điểm) Vì AD là phân giác trong góc A nên AD cắt đường tròn (ABC) tại E là điểm chính giữa cung BC .IE BC Vì E thuộc đường thẳng 0x y và (0; 0).IE IA R E Chọn (2;1)BCn EI pt BC có dạng 2 0.x y m Từ giả thiết 2 2 4 5 3 5 5 HC IH IC HC 3 ( , ) 5 d I BC 2| 5 | 3 85 5 mm m : 2 2 0 : 2 8 0. BC x y BC x y 0,5 Vì BAC nhọn nên A và I phải cùng phía đối với BC, kiểm tra thấy : 2 2 0BC x y thỏa mãn. Từ hệ 2 2 2 2 0 8 6 (0; 2), ; 5 5( 2) ( 1) 5 x y B C x y hoặc 8 6 ; , (0; 2) 5 5 B C . 0,5 Câu 8.a (1,0 điểm) 1 2( ; 2 2; 1); ( 1; ; 2 3).M d M m m m N d N n n n Suy ra ( 1; 2 2; 2 2).MN m n m n m n Vì MN // (P) nên 2 0 2. 0 0 0( ) P m n m nn MN n nN P Suy ra (3; 2; 4)MNu n n và (2; 1; 2).du 0,5 Suy ra 2 2 | 3 12 | | 4 | 1 cos( , ) cos 33 2 4 29 2 4 29 n n MN d n n n n 0,5 ( )f t '( )f t t 2 0 + – 0 5 12 A B C E I D H 2 2 23( 4) 2 4 29 20 19 0 1n n n n n n hoặc 19.n *) 1 3 ( 3; 4; 2), (0; 1;1).n m M N *) 19 21 ( 21; 40; 20), ( 18; 19; 35).n m M N Câu 9.a (1,0 điểm) Từ giả thiết suy ra 1 2,z z không phải là số thực. Do đó ' 0, hay 24( 1) 8(4 1) 0a a 2 24( 6 1) 0 6 1 0.a a a a (*) Suy ra 2 2 1 2 1 1 ( 6 1) 1 ( 6 1) , . 4 4 a a a i a a a i z z z 0,5 Ta có 1 2 z z là số ảo 21z là số ảo 2 2 2 0 ( 1) ( 6 1) 0 2 0 2. a a a a a a a Đối chiếu với điều kiện (*) ta có giá trị của a là 0, 2.a a 0,5 Câu 7.b (1,0 điểm) : 3 18 ( 3 18; ), : 2 5 ( ; 2 5). B BH x y B b b C d y x C c c Từ giả thiết suy ra B đối xứng C qua đường trung trực . 0 : 3 19 279 0 là 60 13 357 4 (6; 4) 10 41 409 9 (9; 23). u BC x y BC M b c b B b c c C AC BH chọn ( 3;1) pt : 3 4 0 ( ; 3 4)AC BHn u AC x y A a a (6 ; 8 3 ), (9 ; 27 3 ).AB a a AC a a 0,5 Ta có 0 2 2 2 2 1 (6 )(9 ) (8 3 )(27 3 ) 1 135 cos( , ) 2 2(6 ) (8 3 ) . (9 ) (27 3 ) a a a a A AB AC a a a a 2 22 3 9(9 )(3 ) 1 2(3 ) 6 102| 9 | 6 10 aa a a a aa a a 4.a Suy ra (4; 8).A 0,5 Câu 8.b (1,0 điểm) Gọi (Q) là mặt phẳng chứa A, B và vuông góc với (P). Suy ra M thuộc giao tuyến của (Q) và (P). ( 2; 4; 4) , (0; 6; 6) 6(0; 1; 1) (1; 1; 1) Q P P AB n AB n n . Suy ra pt (Q): 1 0.y z 0,5 Gọi 1 0 2 1 ( ) ( ) pt : 3 0 2 1 1 y z x y z d P Q d x y z ( 2 2; ; 1) .M t t t d Ta có 2 2 2 ( 2; 0; 1)0 2 36 6 8 0 14 4 14 ; ; . 3 3 33 Mt MA MB t t Mt 0,5 Câu 9.b (1,0 điểm) Hoành độ giao điểm của d và ( )aC là nghiệm của phương trình 2 2 2 1, 1 x ax x x hay 2 ( 1) 1 0, 1.x a x x (1) Phương trình (1) có 2 nghiệm phân biệt khác 1 2 1( 1) 4 0 3.1 aa aa (2) Khi đó gọi 1 2,x x là hai nghiệm phân biệt của (1), ta có 1 1 2 2( ; 2 1), ( ; 2 1).A x x B x x 0,5 Do đó 2 2 2 21 1 2 2( 1) (2 3) ( 1) (2 3)IA IB x x x x 2 21 1 2 2 1 2 1 25 14 5 14 ( ) 5( ) 14 0x x x x x x x x 1 25( ) 14 0,x x vì 1 2.x x (3) Theo định lý Viet ta có 1 2 1.x x a Thay vào (3) ta được 19 5( 1) 14 0 , 5 a a thỏa mãn điều kiện (2). Vậy 19 . 5 a 0,5 A B C H d M trung điểm
File đính kèm:
- De thi thu chuyen DH Vinh lan 22014.pdf