Đề kiểm tra giữa kì I môn Toán Lớp 9 - Năm học 2023-2024 - Trường THCS Thiệu Viên (Có đáp án)
Bạn đang xem nội dung tài liệu Đề kiểm tra giữa kì I môn Toán Lớp 9 - Năm học 2023-2024 - Trường THCS Thiệu Viên (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THCS THIỆU VIÊN ĐỀ CHẴN ĐỀ KIỂM TRA GIỮA KÌ I NĂM HỌC 2023 – 2024 MÔN TOÁN LỚP 9 Thời gian làm bài: 90 phút (Không kể thời gian giao đề) Bài 1:(2,0 điểm) Thực hiện phép tính: a) b) c) d) Bài 2: (1.5 điểm) Tìm x: a) b) c) Câu 3 (1,5 điểm) Cho biểu thức: Q = với x > 0 a) Rút gọn Q b) Tìm x để Q = 3 c) Tính giá trị của Q tại x = Bài 4(1,0 điểm): Một chiếc thang dài m. Cần đặt chân thang cách tường một khoảng bằng bao nhiêu để nó tạo với phương nằm ngang của mặt đất một góc an toàn . (làm tròn kết quả đến chữ số thập phân thứ hai) Bài 5:(3 điểm) Cho tam giác vuông tại , đường cao . a) Cho và Tính , , . b) Kẻ tại , tại . Chứng minh và c) Gọi là trung điểm , cắt tại . Chứng minh: Bài 6:(1.0 điểm) Cho biểu thức . Tính giá trị biểu thức P với: và -------------------------------Hết-------------------------------- Chú ý: Giám thị không giải thích gì thêm TRƯỜNG THCS THIỆU VIÊN ĐỀ LẺ ĐỀ KIỂM TRA GIỮA KÌ I NĂM HỌC 2023 – 2024 MÔN TOÁN LỚP 9 Thời gian làm bài: 90 phút (Không kể thời gian giao đề) Bài 1:(2,0 điểm) Thực hiện phép tính: a) b) c) d) Bài 2: (1.5 điểm) Tìm x: a) b) c) Câu 3 (1,5 điểm) Cho biểu thức P = với a) Rút gọn biểu thức P b) Với giá trị nào của x thì P = c) Tìm các giá trị của x để P < 0 Bài 4(1,0 điểm): Một tòa nhà có chiều cao . Khi tia nắng tạo với mặt đất một góc thì bóng của tòa nhà trên mặt đất dài . Tính chiều cao của tòa nhà. ( Làm tròn đến chữ số thập phân thứ hai) . Bài 5:(3 điểm) Cho tam giác vuông tại . Đường cao . Gọi và lần lượt là hình chiếu của trên và . a) Gỉa sử , . Tính độ dài , và góc , góc . b) Chứng minh: và . c) Qua kẻ đường thẳng vuông góc với cắt tại . Chứng minh rằng: là trung điểm của đoạn thẳng . Bài 6:(1.0 điểm) Giải phương trình sau : -------------------------------Hết-------------------------------- Chú ý: Giám thị không giải thích gì thêm ĐÁP ÁN THI GIỮA HKI MÔN TOÁN ĐỀ CHẴN: Bài 1:(2,0 điểm) Thực hiện phép tính: mỗi câu đúng được 0.5điểm a) d) b) c) Bài 2: (1.5 điểm) Tìm x: a) b) c) a)ĐKXĐ: x≥3/2 b) c) ĐKXĐ: x≥1 Vậy pt có 1 nghiệm x=1 Câu 3 (1,5 điểm) Cho biểu thức: Q = với x > 0 a) Rút gọn Q b) Tìm x để Q = 3 Vậy để Q = 3 thì x=1 c) Tính giá trị của Q tại x = x = Thay vào Q ta được: Vậy với x= thì Q=7/2 Bài 4(1,0 điểm): Một chiếc thang dài m. Cần đặt chân thang cách tường một khoảng bằng bao nhiêu để nó tạo với phương nằm ngang của mặt đất một góc an toàn . (làm tròn kết quả đến chữ số thập phân thứ hai) Gọi x là k/c từ thang đến chân tường Chiều dài thang là h Ta có x= h.cos650= 1,83(m) Vậy ....... Bài 5:(3 điểm) Cho tam giác vuông tại , đường cao . a) Cho và Tính , , . b) Kẻ tại , tại . Chứng minh và c) Gọi là trung điểm , cắt tại . Chứng minh: a) Tam giác vuông tại Áp dụng định lý Pytago vào tam giác vuông có: vuông tại , đường cao ta có: b) vuông tại , đường cao ta có: vuông tại , đường cao ta có: c) Tam giác vuông tại , là đường trung tuyến cân tại Xét hai tam giác và có chung góc ; Suy ra (c – g – c) Mà tam giác vuông tại Từ , , suy ra tại Xét vuông tại , đường cao . Bài 5 (0,5 điểm). Ý Nội dung Điểm 0.5đ Ta có: 0.25 Vậy P = 2017 với và 0.25 Lưu ý: Trên đây là các bước giải cơ bản cho từng bài, từng ý và biểu điểm tương ứng, học sinh phải có lời giải chặt chẽ chính xác mới công nhận cho điểm. Học sinh có cách giải khác đúng đến đâu cho điểm thành phần đến đó. ĐÁP ÁN THI GIỮA HKI MÔN TOÁN ĐỀ LẺ: Bài 1:(2,0 điểm) Thực hiện phép tính: mỗi câu đúng được 0.5điểm a) d) c) d) Bài 2: (1.5 điểm) Tìm x: a) b) c) a)ĐKXĐ: x≥2/3 b) c) ĐKXĐ: x≥2 Lời giải Bài 3: a)ĐKXĐ: x > 0; x 1; x4 Với ĐK đó ta có: P = = = = b) Với x > 0; x 1; x4 thì P = = 4 - 8 = 3 = 8 x = 64 ( TMĐK). Vậy với x = 64 thì P = c) P < 0 Û< 0 Û- 2 0 với mọi x TXĐ)Û< 2 Û x < 4 Vậy với 0 < x < 4 và x 1 thì P < 0 Bài 4 Gọi chiều cao của tòa nhà là , bóng của tòa nhà lên mặt đất là , góc tạo bởi tia nắng với mặt đất là ( như hình vẽ) Áp dụng tỉ số lượng giác của góc nhọn cho tam giác vuông ta có: Vậy tòa nhà cao . Bài 5 (3 điểm) Cho tam giác vuông tại . Đường cao . Gọi và lần lượt là hình chiếu của trên và . a) Gỉa sử , . Tính độ dài , và góc , góc . b) Chứng minh: và . c) Qua kẻ đường thẳng vuông góc với cắt tại . Chứng minh rằng: là trung điểm của đoạn . Lời giải a) Xét tam giác vuông tại có: AH là đường cao (cm). (cm) . . b) Xét tam giác vuông tại , là đường cao Xét tam giác vuông tại , là đường cao Từ và suy ra Xét tứ giác có: là hình chữ nhật. Xét tam giác vuông tại , là đường cao ta có: Xét tam giác vuông tại , là đường cao ta có: Xét tam giác vuông tại có: Từ và suy ra . c) Theo câu a) ta có . Xét tam giác và tam giác có: Mà (cùng phụ với góc ) cân tại . Chứng minh tương tự ta có cân tại . Từ và suy ra . Bài 6:. (0,5 điểm) Giải các phương trình Lời giải Cách 1: Điều kiện: Mà . Thử lại ĐKXĐ Vậy Cách 2: Đặt , Ta có: Do đó , Vậy phương trình có nghiệm . Lưu ý: Trên đây là các bước giải cơ bản cho từng bài, từng ý và biểu điểm tương ứng, học sinh phải có lời giải chặt chẽ chính xác mới công nhận cho điểm. Học sinh có cách giải khác đúng đến đâu cho điểm thành phần đến đó.
File đính kèm:
- de_kiem_tra_giua_ki_i_mon_toan_lop_9_nam_hoc_2023_2024_truon.docx