Đề kiểm tra học kỳ 2 môn toán lớp 12 - Đề 3
Bạn đang xem nội dung tài liệu Đề kiểm tra học kỳ 2 môn toán lớp 12 - Đề 3, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ÑEÀ KIEÅM TRA HOÏC KYØ 2 MOÂN TOAÙN LÔÙP 12 - Đề 3 A.PHẦN CHUNG CHO TẤT CẢ HỌC SINH ( 7 điểm) Câu 1. (3,5 điểm) Cho hàm số : Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Viết phương trình tiếp tuyến của đồ thị tại giao điểm của với trục . Tính diện tích hình phẳng giới hạn bởi đồ thị , trục và trục . Xác định để đường thẳng cắt đồ thị tại hai điểm phân biệt. Câu 2. (1,5 điểm) Tính các tích phân : a) I= b) J= Câu 3. (2 điểm) Trong không gian Oxyz, cho các điểm A(1 ; 0 ; 0) , B(0 ; 2 ; 0) , C(0 ; 0 ; 3). Viết phương trình mặt phẳng (P) đi qua hai điểm B, C và song song với đường thẳng OA. Tìm tọa độ điểm H là hình chiếu vuông góc của gốc tọa độ O trên mặt phẳng(ABC). B.PHẦN RIÊNG : ( 3 điểm) Học sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó.( phần I hoặc phần II) I)Theo chương trình chuẩn. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : trên đoạn [-3;2]. 2) Xác định để hàm số có điểm cực đại và điểm cực tiểu. 3) Trong không gian Oxyz, viết phương trình mặt cầu ( S ) đi qua hai điểm A(-2 ; 4 ; 1), B(2 ; 0 ; 3 ) và có tâm I thuộc đường thẳng (d): II)Theo chương trình nâng cao. 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : trên đoạn [-3;2]. 2) Xác định để hàm số đồng biến trên tập xác định của nó. 3) Trong không gian Oxyz, viết phương trình mặt cầu ( S ) đi qua ba điểm A(-2 ; 4 ; 1), B(2 ; 0 ; 3 ), C(0 ; 2 ; -1) và có tâm I thuộc mp(P) có phương trình: x + y – z + 2 = 0. HẾT Đáp án : A.PHẦN CHUNG CHO TẤT CẢ HỌC SINH ( 7 điểm) Câu 1. (3,5 điểm) Cho hàm số : Khảo sát sự biến thiên và vẽ đồ thị của hàm số. Tập xác định : 0,25 đ Sự biến thiên. . chiều biến thiên : 0,25 đ Hàm số nghịch biến trên các khoảng 0,25 đ Hàm số không có cực trị Tiệm cận : 0,25 đ Đường thẳng là tiệm cận ngang Đường thẳng là tiệm cận đứng. 0,25 đ Bảng biến thiên y’ y x -1/2 - + + -1/2 -1/2 0,25 đ Đồ thị cắt trục tại điểm ( 0 ; 2 ), cắt trục tại điểm ( 2 ; 0 ) Vẽ đồ thị . Lưu ý: Giao điểm của hai tiệm cận là tâm đối xứng của đồ thị. 0,5 đ b)Viết phương trình tiếp tuyến của đồ thị tại giao điểm của với trục . Giao điểm với trục : ( 2 ; 0 ) y’(2) = Phương trình tiếp tuyến của ( C ) tại điểm ( 2 ; 0 ) : 0,5 đ c)Tính diện tích hình phẳng giới hạn bởi đồ thị , trục và trục Giao điểm với trục : ( 2 ; 0 ) Giao điểm với trục : ( 0 ; 2 ). Vì với nên diện tích hình phẳng cần tìm : S = ( đvdt) 0,5 đ d)Xác định để đường thẳng cắt đồ thị tại hai điểm phân biệt. Hoành độ giao điểm của và đồ thị ( ) thỏa phương trình : Vậy với mọi đường thẳng ( d ) luôn cắt (C ) tại hai điểm phân biệt. 0,5 đ Câu 2. (1,5 điểm) Tính các tích phân : a) I= Đặt 0,25 đ Ta có : = 0 thì = thì Vậy I = 0,5 đ b) J= Đặt 0,25 đ Ta có : = 0 thì = 1 thì Vậy J= 0,5 đ Câu 3. (2 điểm) Trong không gian Oxyz, cho các điểm A(1 ; 0 ; 0) , B(0 ; 2 ; 0) , C(0 ; 0 ; 3). a)Viết phương trình mặt phẳng (P) đi qua hai điểm B, C và song song với đường thẳng OA. Ta có Mp(P) đi qua BC và song song với OA nên có vectơ pháp tuyến là : 0,5 đ Mp(P) đi qua điểm B(0 ; 2 ; 0), có vectơ pháp tuyến nên có phương trình : (y – 2)3 + 2z = 03y + 2z – 6 = 0 0,5đ b)Tìm tọa độ điểm H là hình chiếu vuông góc của gốc tọa độ O trên mặt phẳng(ABC). Phương trình mp(ABC) : 0,25 đ Đường thẳng OH vuông góc với mp(ABC) nên có vecto chỉ phương là vecto pháp tuyến của mp(ABC) : ( 6 ; 3 ; 2 ) Phương trình tham số của đường thẳng OH: 0,5 đ H là giao điểm của OH và mp(ABC) nên tọa độ H thỏa hệ : Giải hệ trên ta được H ( 0,25 đ B.PHẦN RIÊNG : ( 3 điểm) I)Theo chương trình chuẩn. 1) Tìm giá trị lớn nhất và nhỏ nhất của hàm số : xác định và liên tục trên R ( thuộc đoạn [ - 3 ; 2 ] ) 0,5 đ Xét trên trên đoạn [-3;2]: Ta có y(-3) = 4 ; y(-2) = 0 ; y(0) = 4 ; y(2) = - 16 Vậy giá trị lớn nhất của hàm số là 4 , đạt tại x = -3 hoặc x = 0 và giá trị nhỏ nhất của hàm số là -16 đạt tại x =2. 0,5 đ 2) Xác định để hàm số có điểm cực đại và điểm cực tiểu. Hàm số xác định có tập xác định là R (1) 0,5 đ Để hàm số có cực đại và cực tiểu thì (1) phải có hai nghiệm phân biệt : 0,5 đ 3) Trong không gian Oxyz, viết phương trình mặt cầu ( S ) đi qua hai điểm A(-2 ; 4 ; 1), B(2 ; 0 ; 3 ) và có tâm I thuộc đường thẳng (d): Vì mặt cầu (S) qua hai điểm A, B nên tâm I của mặt cầu thuộc mặt trung trực của AB. Trung điểm của AB là : K (0 ; 2 ; 2 ) Vecto Phương trình mp trung trực của AB : (x-0)4 +(y-2)(-4)+(z-2)2 = 0 Ta có I là giao điểm của đường thẳng ( d ) và mp trung trực của AB nên tọa độ tâm I thỏa : Giải hệ trên ta được I ( 0,5 đ Bán kính mặt cầu (S) : IB = Phương trình mặt cầu ( S ) 0,5 đ II)Theo chương trình nâng cao. 1) Tìm giá trị lớn nhất và nhỏ nhất của hàm số : trên đoạn [-3;2]. Ta có tập xác định của hàm sô là R Hàm số liên tục trên R. 0,5 đ Ta có y(-3) = ; y(-1) =2 ; y(2) = Vậy giá trị lớn nhất của hàm số là , đạt tại x = 2 và giá trị nhỏ nhất của hàm số là 2 đạt tại x = -1 0,5 đ 2) Xác định để hàm số đồng biến trên tập xác định của nó. Hàm số xác định có tập xác định là R (1) 0,5 đ Để hàm số đồng biến trên tập xác định của nó thì (1) phải có nghiệm kép hoặc vô nghiệm ( vì hệ số a của y’ là số dương) 0,5 đ 3) Trong không gian Oxyz, viết phương trình mặt cầu ( S ) đi qua ba điểm A(-2 ; 4 ; 1), B(2 ; 0 ; 3 ), C(0 ; 2 ; -1) và có tâm I thuộc mp(P) có phương trình: x + y – z + 2 = 0. Vì mặt cầu (S) qua hai điểm A, B nên tâm I của mặt cầu thuộc mặt trung trực của AB. Trung điểm của AB là : K (0 ; 2 ; 2 ) Vecto Phương trình mp trung trực của AB : (x-0)4 +(y-2)(-4)+(z-2)2 = 0 ( 1 ) Vì mặt cầu (S) qua hai điểm B,C nên tâm I của mặt cầu thuộc mặt trung trực của BC. Trung điểm của BC là : J (1 ; 1 ; 1 ) Vecto Phương trình mp trung trực của BC : (x-1)(-2) +(y-1)(2)+(z-1)(-4) = 0 (2) Theo giả thiết tâm I thuộc mp(P):x + y – z + 2 = 0 (3) Vậy tọa độ I thỏa hệ phương trình ( 1 ) , ( 2 ) , ( 3 ). Giải hệ này ta được I( -1 ; 1 ; 2). 0,5 đ Bán kính mặt cầu ( S ) : IA = Vậy phương trình mặt cầu ( S ): 0,5 đ Hết
File đính kèm:
- DEHK2_lop12_2008-2009.doc