Đề ôn học sinh giỏi khối 8 ( Đề 4) Trường THCS Thanh Mai
Bạn đang xem nội dung tài liệu Đề ôn học sinh giỏi khối 8 ( Đề 4) Trường THCS Thanh Mai, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THCS THANH MAI TỔ KHOA HỌC TỰ NHIÊN ĐỀ ÔN HSG KHỐI 8 ( ĐỀ 4) Bài 1(1 điểm): Giải phương trình a) x2 – 4x + 4 = 25 b) c) 4x – 12.2x + 32 = 0 Bài 2 (1,5 điểm): Cho x, y, z đôi một khác nhau và . Tính giá trị của biểu thức: Bài 3 (1,5 điểmTìm hai số x, y nguyên thỏa mãn: x − xy = 7x − 2y − 15 Bài 4 (4 điểm): Cho tam giác ABC nhọn, các đường cao AA’, BB’, CC’, H là trực tâm. a) Tính tổng b) Gọi Ai là phân giác của tam giác ABC; im, in thứ tự là phân giác của góc AIC và góc AIB. Chứng minh rằng: AN.BI.CM = BN. IC.AM. c) Tam giác ABC như thế nào thì biểu thức đạt giá trị nhỏ nhất? TRƯỜNG THCS THANH MAI TỔ KHOA HỌC TỰ NHIÊN ĐỀ ÔN HSG KHỐI 8 ( ĐỀ 5) Bài 1 (4 điểm) Cho biểu thức A = với x khác -1 và 1. a, Rút gọn biểu thức A. b, Tính giá trị của biểu thức A tại x . c, Tìm giá trị của x để A < 0. Bài 2 (3 điểm) Cho . Chứng minh rằng . Bài 3 (3 điểm) Tìm các nghiệm nguyên của phương trình: Bài 4 (2 điểm) Tìm giá trị nhỏ nhất của biểu thức A = . Bài 5 (3 điểm) Cho tam giác ABC vuông tại A có góc ABC bằng 600, phân giác BD. Gọi M,N,I theo thứ tự là trung điểm của BD, BC, CD. a, Tứ giác AMNI là hình gì? Chứng minh. b, Cho AB = 4cm. Tính các cạnh của tứ giác AMNI. Bài 6 (5 điểm) Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N. a, Chứng minh rằng OM = ON. b, Chứng minh rằng . c, Biết SAOB= 20082 (đơn vị diện tích); SCOD= 20092 (đơn vị diện tích). Tính SABCD. ĐÁP ÁN ĐỀ 4 Bài 1(3 điểm): a) Tính đúng x = 7; x = -3 ( 1 điểm ) b) Tính đúng x = 2007 ( 1 điểm ) c) 4x – 12.2x +32 = 0 2x.2x – 4.2x – 8.2x + 4.8 = 0 ( 0,25điểm ) 2x(2x – 4) – 8(2x – 4) = 0 (2x – 8)(2x – 4) = 0 ( 0,25điểm ) (2x – 23)(2x –22) = 0 2x –23 = 0 hoặc 2x –22 = 0 ( 0,25điểm ) 2x = 23 hoặc 2x = 22 x = 3; x = 2 ( 0,25điểm ) Bài 2(1,5 điểm): yz = –xy–xz ( 0,25điểm ) x2+2yz = x2+yz–xy–xz = x(x–y)–z(x–y) = (x–y)(x–z) ( 0,25điểm ) Tương tự: y2+2xz = (y–x)(y–z) ; z2+2xy = (z–x)(z–y) ( 0,25điểm ) Do đó: ( 0,25điểm ) Tính đúng a = 1 ( 0,5 điểm ) Bài 3(1,5 điểm): Bài 4 (4 điểm): Vẽ hình đúng (0,25điểm) a) ; (0,25điểm) Tương tự: ; (0,25điểm) (0,25điểm) b) Áp dụng tính chất phân giác vào các tam giác ABC, abi, aic: (0,5điểm ) (0,5điểm ) (0,5điểm ) c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx (0,25điểm) -Chứng minh được góc BAD vuông, CD = AC, AD = 2CC’ (0,25điểm) - Xét 3 điểm B, C, D ta có: BD BC + CD (0,25điểm) -BAD vuông tại A nên: AB2+AD2 = BD2 AB2 + AD2 (BC+CD)2 AB2 + 4CC’2 (BC+AC)2 4CC’2 (BC+AC)2 – AB2 (0,25điểm) Tương tự: 4AA’2 (AB+AC)2 – BC2 4BB’2 (AB+BC)2 – AC2 -Chứng minh được : 4(AA’2 + BB’2 + CC’2) (AB+BC+AC)2 (0,25điểm) Đẳng thức xảy ra BC = AC, AC = AB, AB = BC AB = AC =BCABC đều Kết luận đúng (0,25điểm) *Chú ý :Học sinh có thể giải cách khác, nếu chính xác thì hưởng trọn số điểm câu đó Đáp án ĐỀ 5 Bài 1( 4 điểm ) a, ( 2 điểm ) Với x khác -1 và 1 thì : A= 0,5đ = 0,5đ = 0,5đ = 0,5đ b, (1 điểm) Tại x = = thì A = 0,25đ = 0,25đ 0,5đ c, (1điểm) Với x khác -1 và 1 thì A<0 khi và chỉ khi (1) 0,25đ Vì với mọi x nên (1) xảy ra khi và chỉ khi KL 0,5đ 0,25đ Bài 2 (3 điểm) Biến đổi đẳng thức để được 0,5đ Biến đổi để có 0,5đ Biến đổi để có (*) 0,5đ Vì ;;; với mọi a, b, c nên (*) xảy ra khi và chỉ khi ; và ; 0,5đ 0,5đ Từ đó suy ra a = b = c 0,5đ Bài 3 (3 điểm) (1) Bằng phương pháp thử chọn ta thấy 34 chì có duy nhất một dạng phân tích thành tồng của hai số chính phương . Do đó phương trình thỏa mãn chỉ trong hai khả năng: hoặc Giải các hệ trên phương trình (1) có bốn nghiệm nguyên là: (2 ; 3), (3 ; 2), (1 ; 2), (2 ; 1) 0,5đ Bài 4 (2 điểm) Biến đổi để có A= 0,5đ = 0,5đ Vì và nên do đó 0,5đ Dấu = xảy ra khi và chỉ khi 0,25đ KL 0,25đ Bài 5 (3 điểm) a,(1 điểm) Chứng minh được tứ giác AMNI là hình thang 0,5đ Chứng minh được AN=MI, từ đó suy ra tứ giác AMNI là hình thang cân 0,5đ b,(2điểm) Tính được AD = ; BD = 2AD = AM = 0,5đ Tính được NI = AM = 0,5đ DC = BC = , MN = 0,5đ Tính được AI = 0,5đ Bài 6 (5 điểm) a, (1,5 điểm) Lập luận để có , 0,5đ Lập luận để có 0,5đ OM = ON 0,5đ b, (1,5 điểm) Xét để có (1), xét để có (2) Từ (1) và (2) OM.() 0,5đ Chứng minh tương tự ON. 0,5đ từ đó có (OM + ON). 0,5đ b, (2 điểm) , 0,5đ Chứng minh được 0,5đ Thay số để có 20082.20092 = (SAOD)2 SAOD = 2008.2009 0,5đ Do đó SABCD= 20082 + 2.2008.2009 + 20092 = (2008 + 2009)2 = 40172 (đơn vị DT) 0,5đ
File đính kèm:
- DE THI HSG TOAN 8 DE 4 5.doc