Đề ôn thi vào lớp 10A
Bạn đang xem nội dung tài liệu Đề ôn thi vào lớp 10A, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề ụn thi vào lớp 10 Đề số 1 Câu 1 ( 3 điểm ) Cho biểu thức : Tìm điều kiện của x để biểu thức A có nghĩa . Rút gọn biểu thức A . Giải phơng trình theo x khi A = -2 . Câu 2 ( 1 điểm ) Giải phơng trình : Câu 3 ( 3 điểm ) Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) . Điểm A có thuộc (D) hay không ? Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A . Viết phơng trình đờng thẳng đi qua A và vuông góc với (D) . Câu 4 ( 3 điểm ) Cho hình vuông ABCD cố định , có độ dài cạnh là a .E là điểm đi chuyển trên đoạn CD ( E khác D ) , đờng thẳng AE cắt đờng thẳng BC tại F , đờng thẳng vuông góc với AE tại A cắt đờng thẳng CD tại K . Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân . Gọi I là trung điểm của FK , Chứng minh I là tâm đờng tròn đi qua A , C, F , K . Tính số đo góc AIF , suy ra 4 điểm A , B , F , I cùng nằm trên một đờng tròn . Đề số 2 Câu 1 ( 2 điểm ) Cho hàm số : y = Nêu tập xác định , chiều biến thiên và vẽ đồ thi của hàm số. Lập phơng trình đờng thẳng đi qua điểm ( 2 , -6 ) có hệ số góc a và tiếp xúc với đồ thị hàm số trên . Câu 2 ( 3 điểm ) Cho phơng trình : x2 – mx + m – 1 = 0 . Gọi hai nghiệm của phơng trình là x1 , x2 . Tính giá trị của biểu thức . . Từ đó tìm m để M > 0 . Tìm giá trị của m để biểu thức P = đạt giá trị nhỏ nhất . Câu 3 ( 2 điểm ) Giải phơng trình : Câu 4 ( 3 điểm ) Cho hai đờng tròn (O1) và (O2) có bán kính bằng R cắt nhau tại A và B , qua A vẽ cát tuyến cắt hai đờng tròn (O1) và (O2) thứ tự tại E và F , đờng thẳng EC , DF cắt nhau tại P . Chứng minh rằng : BE = BF . Một cát tuyến qua A và vuông góc với AB cắt (O1) và (O2) lần lợt tại C,D . Chứng minh tứ giác BEPF , BCPD nội tiếp và BP vuông góc với EF . Tính diện tích phần giao nhau của hai đờng tròn khi AB = R . Đề số 3 Câu 1 ( 3 điểm ) Giải bất phơng trình : Tìm giá trị nguyên lớn nhất của x thoả mãn . Câu 2 ( 2 điểm ) Cho phơng trình : 2x2 – ( m+ 1 )x +m – 1 = 0 Giải phơng trình khi m = 1 . Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng . Câu3 ( 2 điểm ) Cho hàm số : y = ( 2m + 1 )x – m + 3 (1) Tìm m biết đồ thị hàm số (1) đi qua điểm A ( -2 ; 3 ) . Tìm điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị của m . Câu 4 ( 3 điểm ) Cho góc vuông xOy , trên Ox , Oy lần lợt lấy hai điểm A và B sao cho OA = OB . M là một điểm bất kỳ trên AB . Dựng đờng tròn tâm O1 đi qua M và tiếp xúc với Ox tại A , đờng tròn tâm O2 đi qua M và tiếp xúc với Oy tại B , (O1) cắt (O2) tại điểm thứ hai N . Chứng minh tứ giác OANB là tứ giác nội tiếp và ON là phân giác của góc ANB . Chứng minh M nằm trên một cung tròn cố định khi M thay đổi . Xác định vị trí của M để khoảng cách O1O2 là ngắn nhất . Đề số 4 . Câu 1 ( 3 điểm ) Cho biểu thức : Rút gọn biểu thức . Tính giá trị của khi Câu 2 ( 2 điểm ) Giải phơng trình : Câu 3 ( 2 điểm ) Cho hàm số : y = - Tìm x biết f(x) = - 8 ; - ; 0 ; 2 . Viết phơng trình đờng thẳng đi qua hai điểm A và B nằm trên đồ thị có hoành độ lần lợt là -2 và 1 . Câu 4 ( 3 điểm ) Cho hình vuông ABCD , trên cạnh BC lấy 1 điểm M . Đờng tròn đờng kính AM cắt đờng tròn đờng kính BC tại N và cắt cạnh AD tại E . Chứng minh E, N , C thẳng hàng . Gọi F là giao điểm của BN và DC . Chứng minh Chứng minh rằng MF vuông góc với AC . Đề số 5 Câu 1 ( 3 điểm ) Cho hệ phơng trình : Giải hệ phơng trình khi m = 1 . Giải và biện luận hệ phơng trình theo tham số m . Tìm m để x – y = 2 . Câu 2 ( 3 điểm ) Giải hệ phơng trình : Cho phơng trình bậc hai : ax2 + bx + c = 0 . Gọi hai nghiệm của phơng trình là x1 , x2 . Lập phơng trình bậc hai có hai nghiệm là 2x1+ 3x2 và 3x1 + 2x2 . Câu 3 ( 2 điểm ) Cho tam giác cân ABC ( AB = AC ) nội tiếp đờng tròn tâm O . M là một điểm chuyển động trên đờng tròn . Từ B hạ đờng thẳng vuông góc với AM cắt CM ở D . Chứng minh tam giác BMD cân Câu 4 ( 2 điểm ) Tính : Giải bất phơng trình : ( x –1 ) ( 2x + 3 ) > 2x( x + 3 ) .
File đính kèm:
- 5 De on thi vao lop 10.doc