Đề tài Sáng tạo bài toán nguyên hàm - Tích phân bằng cách khai thác các bai toán đặc biệt và biến đổi qua nhiều phép tính. ______________________________________________________________

doc31 trang | Chia sẻ: bobo00 | Lượt xem: 909 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Đề tài Sáng tạo bài toán nguyên hàm - Tích phân bằng cách khai thác các bai toán đặc biệt và biến đổi qua nhiều phép tính. ______________________________________________________________, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
A- MỞ ĐẦU:
1. Lý do chọn đề tài:
Trong chương trình Toán phổ thông ,Tích phân là một trong những phần quan trọng của môn Giải tích lớp 12. Các bài toán tích phân rất đa dạng và phong phú, thường có mặt trong các kì thi tốt nghiệp , thi tuyển sinh Đại học và Cao đẳng. Đây là những bài tập gây cho học sinh không ít khó khăn dẫn đến tâm lý sợ và ngại, thiếu tự tin vào khả năng của mình. 
Chương trình giáo dục phổ thông ban hành kèm theo Quyết định số 16/2006/QĐ-BGDĐT ngày 5/6/2006 của Bộ trưởng Bộ GD&ĐT đã nêu: “Phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh; phù hợp với đặc trưng bộ môn, đặc điểm đối tượng học sinh , điều kiện của từng lớp học; bồi dưỡng cho học sinh phương pháp tự học, khả năng hợp tác ; rèn luyện kĩ năng vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú và trách nhiệm học tập của học sinh”.
Trong quá trình giảng dạy, người thầy cần nâng cao được tính tích cực, chủ động và sáng tạo của học sinh, rèn luyện cho học sinh có khả năng phát hiện ra những bài toán mới từ những bài toán đã có; cần khơi dậy và phát triển tiềm năng sáng tạo còn tiềm ẩn trong mỗi học sinh. 
Bài viết này tôi xin đưa ra một biện pháp được áp dụng trong khi dạy chủ đề tự chọn Nguyên hàm-Tích phân lớp 12 là “sáng tạo bài toán tích phân mới từ một số bài toán tích phân cơ bản”, nhằm giúp các em học sinh có kiến thức sâu , rộng về tích phân; có thêm nhiều bài tập để rèn luyện kỹ năng , và giúp học sinh phát triển tư duy sáng tạo.
 2. Đối tượng nghiên cứu:
- Học sinh lớp 12 trường THPT Quang Trung.
- Kiến thức về Nguyên hàm và Tích phân; Kỹ năng tìm Nguyên hàm và tính Tích phân.
-Giải pháp giúp học sinh lớp 12 học tốt Tích phân.
 3. Phạm vi của đề tài:
Đề tài được nghiên cứu, thử nghiệm trong phạm vi lớp 12A trường THPT Quang Trung,vào các tiết tự chọn thuộc chủ đề Nguyên hàm-Tích phân.
4. Phương pháp nghiên cứu:
a) Nghiên cứu tài liệu:
Nghiên cứu những tài liệu có liên quan đến đề tài:
- Sách giáo khoa Giải tích lớp 12 .
- Tài liệu tham khảo.
b) Điều tra:
- Thực dạy và kết quả kiểm tra:
Trong quá trình nghiên cứu đề tài, tôi đã tiến hành thực dạy các lớp 12:
+Năm học 2008-2009: Lớp 12A: đối chứng.
+Năm học 2011-2012: Lớp 12A: thực nghiệm.
- Dự giờ: Thường xuyên dự giờ để biết được mức độ hiểu biết và khả năng giải toán tích phân của học sinh và cách giải quyết vấn đề của đồng nghiệp, từ đó để đánh giá chính xác kết quả phương pháp của mình.
- Đàm thoại:
+ Trao đổi với đồng nghiệp để có kinh nghiệm và phương pháp dạy phù hợp với phân môn.
+ Trao đổi với các em học sinh về các bài toán tích phân mới để biết được cách tìm ra hướng giải bài toán của các em, từ đó có cách dạy tốt hơn.
c)Giả thuyết khoa học:
Nếu học sinh tìm ra được bài toán mới thì các em cảm thấy hăng say, tích cực , tự tin , và kết quả kiểm tra cho thấy các lớp thực nghiệm vẫn cao hơn.
B-NỘI DUNG : 
 1.Cơ sở lí luận: 
Có nhiều bài tập tích phân và ví dụ trong SGK khi giải xong học sinh vẫn chưa hiểu tại sao lại giải như vậy, và những bài toán như thế nào thì vận dụng phương pháp giải đó. Và khi gặp bài toán có một số điểm tương tự với bài toán đã giải là học sinh cứ mặc nhiên vận dụng mà không phát hiện ra sự nhầm lẫn của mình. Nhiều giáo viên đã đưa ra được nhiều phương pháp giải quyết vấn đề đó có hiệu quả như: Phân dạng bài tập theo phương pháp giải và giải nhiều bài tập cho học sinh ghi nhớ . Theo phương pháp này đôi khi học sinh cảm thấy sợ vì phải ghi nhớ quá nhiều; thậm chí có học sinh tưởng mình biết tất cả các phương pháp giải rồi dẫn đến không còn hứng thú trong giải các bài toán tích phân mới.
2. Cơ sở thực tiễn:
a) Thực trạng việc dạy của giáo viên: 
Có một số giáo viên đã vận dụng phương pháp dạy học sáng tạo nhưng thường dừng lại ở mức độ nhỏ lẻ như khai thác những bài toán tương tự, tìm và giải bài toán tổng quát.
b) Thực trạng việc học của học sinh:
Đa số học sinh chỉ biết giải các bài tập tích phân tương tự với những bài mà mình đã giải rồi, và bế tắc khi gặp bài toán tích phân mới. Nhiều học sinh không hề có chút suy nghỉ tìm lời giải khi gặp những bài toán tích phân mới.
 Chất lượng thực tế qua khảo sát chất lượng năm 2008-2009:
Lớp
Số lượng
Đạt yêu cầu
Không đạt yêu cầu
Số lượng
%
Số lượng
%
12A
50
17
34
33
66
c)Sự cần thiết của đề tài:
Qua phân tích thực trạng việc học của học sinh và việc dạy của giáo viên, tôi nhận thấy đề tài cần thiết đối với giáo viên trực tiếp giảng dạy nhằm giới thiệu những kinh nghiệm và phương pháp phù hợp để nâng cao hiệu quả dạy tích phân cho học sinh lớp 12.
3. Nội dung vấn đề:
a)Vấn đề được đặt ra:
Hiện nay cách dạy mới là làm sao phát huy được tính tích cực , chủ động và sáng tạo của học sinh trong học tập và rèn luyện. Để phát huy điều đó, chúng ta cần phải đưa ra được những phương pháp dạy học hợp lí nhằm tạo cho học sinh có hứng thú trong học tập, để đem lại kết quả trong học tập tốt hơn ,và hiệu quả giảng dạy cao hơn .
 b)Sơ lược quá trình thực hiện sáng kiến kinh nghiệm:
Để hoàn thành đề tài, tôi đã tiến hành các bước sau: Chọn đề tài; Điều tra thực trạng; Nghiên cứu đề tài; Xây dựng đề cương và lập kế hoạch;Tiến hành nghiên cứu; Thống kê so sánh; Viết đề tài.
c)Các bước sáng tạo bài toán : 
Trước tiên ta bắt đầu từ bài toán tính nguyên hàm của một hàm số thường gặp mà không có trong bảng nguyên hàm của các hàm số thường gặp của sách giáo khoa Giải tích 12 đó là hàm số : 
Bài toán 1: Tính : .
Giải: 
Đặt , ta có : .
+Hướng sáng tạo một:
1.1) Tính : ( với là một trong các dạng hàm số thường gặp):
Đặt , ta có : .
+Khai thác bài toán quen thuộc ( đặc biệt ):
Ta xem là một trong các nguyên hàm đặc biệt cần bổ sung cho học sinh thì ta phải lựa chọn biểu thức . 
Chẳng hạn: 
1.1.1)Để củng cố tích phân của hàm số hữu tỉ dạng: , , , (với P(x) là đa thức có bậc ), .... Ta chọn là đa thức . 
Ví dụ 1: Tính :
a) , () ; b) , ().
Giải
a) Đặt , ta có : 
. 
b)Đặt , ta có :
.
 Tìm (Xem mục 4.5) 
Ví dụ 2: Tính 
a); b) .
Giải:
a) Đặt , ta có :
.
b) Đặt , ta có :
 Tính .
 Ta tính : 
 i) ; (Xem mục 4.5) 
 ii) 
 .
 Và .
 Ví dụ 3: Tính các tích phân sau:
a) ; b) ; c) ; ; ; d) .
Giải: 
a) Đặt , ta có : 
b) Đặt , ta có :
 Tính .(Ví dụ 5- trang 108 –Giải tích 12).
c) Đặt , ta có :
 Tính 
 Đặt , ta có : , và .
 Khi đó: .
Vậy .
Chú ý: Trường hợp tam thức bậc hai có nghiệm ta có thể làm theo cách sau: 
.
Ví dụ 4: Tính tích phân : 
a) ; b) .
.
1.1.2)Ta có thể củng cố một số dạng Tích phân của hàm số vô tỉ bằng cách thay là hàm số vô tỉ: 
Ví dụ 5: Tính 
a) ; b) ;
Giải:
a) Đặt , ta có :
b) Đặt , ta có :
 = 
 = . 
 Tính .
 Đặt 
 Suy ra = .
 Đặt .
 .
Ví dụ 6: Tính tích phân
a) ; b) . ( : Xem thêm dạng ).
Giải:
a)Đặt 
.
 Tính .
 Đặt ;
 Với ; 
 Suy ra .
Vậy .
 Cách 2: Đặt ;
 Với ; 
 Suy ra . Đặt ;
 .
b)Đặt .
 . 
1.1.3)Và ta có thể tạo ra một số bài tích phân khác củng bằng cách thay bởi hàm số lượng giác, hàm số mũ, hàm số lôgarit như sau:
Ví dụ 7: Tính tích phân
a) ; b); 
Giải:
a) ; 
Tính .
Đặt . Suy ra .
Vậy .
Cách 2: Tính . 
Đặt . Suy ra
Vậy .
b) . 
+Tính . Đặt . 
Suy ra .
+Tính . Đặt . 
Suy ra .
Vậy .
Bài tập: Tính các tích phân
a); b) ; 
c); d) .
Hướng dẫn:
a) . Tính .
Đặt . 
Suy ra ;
.
b) . 
+Tính . Đặt . 
Suy ra ;
+Tính . Đặt ;
.
Vậy .
d) Đặt .
Vậy .
+Hướng sáng tạo hai:
1.2) Dạng .
1.2.1)Tính .
Đặt và .
1.2.2)Tính ( với ).
Đặt ( với F(x) là một nguyên hàm của f(x)).
 Suy ra .
+Từ đó ta nghỉ ngay đến tích phân là một trong các tích phân cần phải củng cố thêm cho học sinh như : ,... thì ta sẻ xây dựng được một số tích phân mới : 
Ví dụ: Tính tích phân 
a); b) (ĐH2013A).
Giải:
a)Đặt .
.
(Chú ý: Tính ).
b) Đặt . Theo công thức ta có 
.
+ Nếu một trong số các số hàm số thường gặp để tạo ra các tích phân mới :
Ví dụ 8: Tính các tích phân 
c) ; d) ; 
Giải:
d) .
+Tính ;
Đặt . Suy ra .
+Tính ;
Đặt . Suy ra .
Vậy .
e) ; g) ; 
h) ; k);
l) ; m) .
1.3)Dạng .
Ta có ( với là một trong các hàm số thường gặp), ví dụ: 
a) ; b ) ; c); d); 
e) ; g) ; 
h) ; i) .
1.4)Tìm một số tích phân dạng ( với là một trong các hàm số thường gặp), ví dụ:
a) ; 
b) ; (); 
 ; ;
c) ; 
d) ; ; 
e); ; 
g) ; ;
 h) ; ; 
 .
1.5)Tìm tích phân dạng , , , và
 (với , là một trong các hàm số thường gặp), ví dụ: 
a) ; ; 
 ; ;
b) ; ; 
c) ; ; 
 ; ; 
 ; .
d) ; ;
 .
Do học sinh không được làm quen với cách đặt hoặc trong những bài toán giải phương trinh vô tỉ có chứa biểu thức , và nên còn khó hiểu khi giải bài toán sau đây:
Bài toán 2.Tính các tích phân sau: (Bài tập SGK)
a) ; b)( với ).
Giải:
a)Đặt , với , ta có : 
và với thì , với thì . Ta được: .
b)Đặt , với , ta có : 
và với thì , với thì .Ta được:
.
 Sau khi giảng giải cho học sinh hiểu một cách tường minh bài toán trên là tại sao lại chọn cách đặt đó mà không lựa chọn cách đặt khác . Thì ta có thể bắt đầu với các bài toán mới như sau : 
2.1)Qua bài toán trên ta thấy xuất hiện các biểu thức lượng giác và thay thế vị trí của biến và ; và bài toán tích phân hàm số vô tỉ được chuyển thành bài toán tích phân hàm số lượng giác. Chính vì thế mà ta nghĩ ngay đến việc thay thế các biểu thức và trong các bài toán tích phân hàm số lượng giác đơn giản bởi biến và để được các bài toán tích phân mới ,ví dụ :
1) a) ; () . 
 b) ; 
2) a) ; b) ; 
 c) ( ); d) ( ).
3) a); b) ; 
 c) ( ). 
 4)a) ; b) ;
 c)Cho . Lập hệ thức giữa và .
5) Cho . Lập hệ thức giữa và .
6) a) ; b) ; 
 c) .
 Lưu ý: Nếu đặt thay vào các bài toán tích phân có chứa biểu thức thì ta có thể chọn một trong các giá trị của cận tương ứng trong bảng 
t
0
x
0
a
 Theo cách trên ta đã đưa ra được một loạt các bài tập tương tự với bài toán đã cho (bài toán 2). Ta tiếp tục với việc tìm kiếm bài toán ẩn chứa trong đó là bài toán 2) như sau: 
2.2)Vì hàm số là một hàm số chẵn nên ta nghĩ ngay đến bài toán (với và là hàm số chẵn trên đoạn [] )
(Chứng minh xem bài toán 5), và chọn một số hàm số chẵn đơn giản có chứa biểu thức để tạo ra các tích phân mới : 
a) (với ) ; b); 
 c) ; d) (với ) ; e); f). 
2.3)Kết hợp với bài toán: (với , là hàm số lẻ trên đoạn [])(Chứng minh xem bài toán 5.7), ta chọn một số hàm số lẻ đơn giản có chứa biểu thức , ta được các tích phân mới : 
a)(với ); ; 
 ;
b) ( với ); ; 
 . 
2.4)Nếu thay thế biểu thức bởi cặp biểu thức và ta có các tích phân mới , ví dụ : 
a) ( với ); ; 
 ;
b) ( với ); ; 
 ;
c) ( với ); ; 
 ;
d) ( với ); ;
 ;
2.5)Từ các bài toán tích phân 2.4) ta đưa ra các bài toán tích phân có chứa một trong các biểu thức , nhưng giải được theo phương pháp đặt ( hoặc ) , để ghép vào như : 
a) ( với ); ; 
 ;
b) ( với ); ; 
 ; 
c) (với ); ; 
 ;
d) .
2.6)Từ các bài toán tích phân trên ta thấy cặp biểu thức và quá quen thuộc nên ta tìm cách thay đổi cặp biểu thức đó , ví dụ thay 
( với ) vào các tích phân trong bài 2.4) ta có các tích phân : 
a) ( với ); ; ;
b) ( với ); ; ;
c) ( với ); ; ;
d) ( với ); ; ;
2.7) Từ các tích phân trong bài 2.4) và 2.6) ta đưa ra các tích phân mới có chứa cặp biểu thức và dạng hoặc bằng cách đặt hoặc hay , và ta có thể chọn một trong các giá trị của cận tương ứng trong bảng 
u
0
x
b
ví dụ :
a) ; ; ; ;
b) ; ; ; ;
c) ; ;
d) ; ; ;
e) ; ; ;
2.8)Hoặc dạng , ví dụ : 
a) ; b) ; 
c) . 
2.9)Ta xét thêm tích phân :
(với , ) bằng cách đặt hoặc hay , và ta có thể chọn một trong các giá trị của cận tương ứng trong bảng 
u
0
x
ví dụ : 
a) ; b) ; 
c) ; d) ; 
e) ; g) . 
2.10) Thay vào các tích phân trong bài 2.9) ta có các tích phân: a) ; b) ; 
c) . 
2.11)Thay hoặc vào các tích phân trong bài 2.9) ta có các tích phân:
a) ; b) . 
2.12)Từ việc quá quen thuộc với cách giải đối với bài toán tích phân có chứa biểu thức ở trên nên ta đưa ra các bài toán tích phân mới có chứa biểu thức nhưng giải được theo phương pháp đổi biến khác (đặt ) để so sánh, ví dụ như: 
a) ; b) ; 
c) ; d) .
 Ta đã khai thác các bài toán tích phân có chứa biểu thức thì nên tìm đến bài toán tích phân có chứa một trong các biểu thức , để so sánh : 
Bài toán 3: Tính các tích phân sau: 
 a); ()
 b); ( ). 
3.1)Tính tích phân: 
a) ; b) .
Giải: a)Tính 
Cách 1: Đặt với , ta có : , và với thì , với thì . Ta được: 
.
Cách 2: 
Đặt ta có ; với , với .
Suy ra .
b)Tính 
Đặt ta có ;với , với .
Suy ra .
 3.2)Tính tích phân: :
 a) ; b) .
Giải: a)Tính 
Cách 1: Đặt với , ta có : , và với thì , với thì . Ta được: 
.
Cách 2: 
Đặt . Suy ra 
.
Vậy .
b)Tính 
Đặt . Suy ra 
.
Vậy .
3.3)Thay mỗi giá trị của vào bài toán 3.1) và 3.2) ta được một số tích phân mới ví dụ: 
a) ; ; ;
b) ; ; ;
c) ; ; . 
3.4)Từ các bài toán 3.1), 3.2) và 3.3) ta đưa ra những bài toán tích phân có chứa một trong các biểu thức và nhưng được giải theo phương pháp khác (đặt hoặc ), ví dụ: 
a) ; ; ; 
b) ; ; ;
c) . 
3.5)Kết hợp bài toán 3.3) và bài toán 3.4) ta có các tích phân mới: 
a) ; b); c);(); d) ;
e) ; g) . 
3.6)Từ công thức : , ta xem tích phân trong bài toán 3.1) và 3.2) là biểu thức để hướng đến tích phân cần tìm là biểu thức , ta có các tích phân sau:
a) ; b) .
Bài toán 4 : Tính các tích phân sau: 
a) (ví dụ SGK ); b) ( Bài tập SGK ).
Giải: 
a)Đặt ,với , ta có : , và với thì , với thì . Ta được: 
.
b) Đặt ,với , ta có : , và với thì , với thì . Ta được: 
.
4.1)Đặt vào vị trí của các bài toán tích phân hàm số lượng giác đơn giản ta có các tích phân sau:
a) ; b) ; 
c); d) ;
e) Cho (với ). Lập hệ thức giữa và . 
4.2)Thay vào một trong các tích phân trên ta có: 
a) ; b) .
4.3)Từ công thức : , ta xem tích phân trong bài toán 4) là biểu thức để hướng đến tích phân cần tìm là biểu thức , ta có các tích phân : 
a) ; b) .
4.4)Qua hai ví dụ ở bài toán 4) khiến ta không thể không xét bài toán quát : 
 ( với ).
Giải:
Đặt , với , ta có: ,
và với thì , với thì . Ta được: .
4.5)Và bài toán tổng quát: 
(với , ) bằng cách đặt , và ta có thể chọn một trong các giá trị của cận tương ứng trong bảng 
t
0
x
 ví dụ : 
a) ; b) ; c); d) .
Bài toán 5: Cho là hàm số chẵn trên đoạn []. Chứng minh rằng : 
 (với ).
Hướng dẫn:
 Đặt , ta có: 
. 
5.1) Thay bởi một số hàm số cụ thể và chọn ta có các tích phân sau: 
a) ; b) ; 
c) ; d) ;
f) ; đ)(); ; 
e) (); ; 
g)(); ;
h) ; i) .
5.2)Từ công thức : , ta xem các tích phân trong bài 5.1) là biểu thức để hướng đến tích phân cần tìm là biểu thức , ta có các tích phân :
a) ; b) ; 
c) (); ; 
d) ; ;
5.3)Thay bởi một số hàm số cụ thể và chọn ta có các tích phân sau:
a) ; c) ; 
d) ; đ);
e) (với ) ; ; 
f) (với ); . 
5.4)Thay bởi một số hàm số cụ thể và chọn ta có các tích phân sau:
a) ; b) .
5.5)Từ các bài toán 5.1) và 5.3) ta rút ra bài toán sau: 
Cho là hàm số chẵn trên đoạn [].Chứng minh rằng: 
 (với )(hoặc: ).
5.6)Từ công thức : , ta xem các tích phân trong bài 5.3) là biểu thức để hướng đến tích phân cần tìm là biểu thức , ta có các tích phân sau:
a) ; b) ; c); d) .
5.7)Từ các tích phân trong bài 5.6) ta có bài toán tổng quát : 
Cho là một hàm số lẻ trên đoạn []. Chứng minh rằng : 
 (với ).
5.8)Từ bài toán 5.7) thay , ta có bài toán sau: 
Cho là hàm số lẻ trên đoạn [].Chứng minh rằng: .
5.9) Thay , vào bài toán 5.8) ta có các tích phân sau: a); b) .
5.10) Từ bài toán 5.7) thay , ta có bài toán sau: 
 Cho là hàm số lẻ trên đoạn [].Chứng minh rằng: 
 .
5.11) Thay vào bài toán 5.10) ta có các tích phân sau: 
a) ; b) .
5.12) Từ bài toán 5.7) thay , ta có bài toán sau: 
Cho là một hàm số lẻ trên đoạn []. Chứng minh rằng : 
 .
5.13)Thay vào bài toán 5.12) ta có các tích phân:.
5.14)Từ các tích phân và ( với là hàm số chẵn trên đoạn []) trong các bài toán 5.1) và 5.3); thay ta có các tích phân và , ví dụ :
a) ; ;
b) ; ;
c) ; ;
d) ; .
d) Kết quả cụ thể:
Qua thực hiện sáng kiến kinh nghiệm, tôi nhận thấy các em có nhiều tiến bộ qua tiết học, lớp được dạy thử nghiệm 12A.
Đối tượng học sinh 12A (2008-2009) có trình độ ngang nhau (đối chứng) với 12A (thực nghiệm)
Còn ở lớp thực nghiệm, đa số các em giải toán đạt đô chính xác cao.
Với những biện pháp đã áp dụng, sau khi thực nghiệm và đối chứng đề tài ở lớp, tôi thu được kết quả sau: 
Lớp
Số lượng
Đạt yêu cầu
Không đạt yêu cầu
Ghi chú
Số lượng
%
Số lượng
%
12A
50
17
34
33
66
Đối chứng
Lớp
Số lượng
Đạt yêu cầu
Không đạt yêu cầu
Ghi chú
Số lượng
%
Số lượng
%
12A
50
29
58
21
42
Thực nghiệm
Với kết quả trên, tôi thấy học sinh có tiến bộ qua kiểm tra. Nhiều em giải toán tích phân đạt kết quả chính xác cao. Tạo điều kiện cho tôi tiếp tục áp dụng kết quả đạt được cho những năm học sau.
C- KẾT LUẬN:
 Để có thể đạt được mục đích đề ra của sáng kiến kinh nghiệm là giúp học sinh hiểu sâu kiến thức về tích phân, có nhiều bài tập cho các em rèn luyện kỷ năng và phát triển tư duy sáng tạo cho học sinh lớp 12A trường THPT Quang Trung, Tôi nghiên cứu tìm hiểu thêm ở các lớp khác, ở các tài liệu chuyên môn khác, sử dụng các hình thức so sánh đối chiếu trong giảng dạy.
1. Bài học kinh nghiệm:
Qua thử nghiệm đã nêu ở trên, tôi thấy kết quả thu được cao hơn giờ dạy đối chứng. Điều đó chứng tỏ rằng để học sinh tích cực, chủ động, sáng tạo và hiệu quả trong học tập ; người giáo viên cần sử dụng linh hoạt và nhuần nhuyễn các biện pháp giảng dạy, phát huy được tính sáng tạo của mình trong giảng dạy; song song đó cần tích cực nghiên cứu sách vở và trau dồi năng lực chuyên môn.
Khi nghiên cứu đề tài “Sáng tạo bài toán tích phân mới từ một số bài toán tích phân cơ bản”, tôi nhận thấy bản thân mình đã trở thành một con người sáng tạo, kiến thức mở rộng thêm.
Bên cạnh những mặt đạt được cũng còn những hạn chế, một số học sinh yếu không nắm được nguyên hàm của các hàm số thường gặp nên chưa tiếp cận được cách khai thác bài toán tích phân mà tôi đã đưa ra. Tôi cố gắng tìm ra biện pháp để nâng cao hiệu quả trong những năm sắp tới. Mong các đồng nghiệp và các bạn giáo viên trong tổ, trong trường hỗ trợ nhiều cho tôi về phương pháp dạy học “Sáng tạo bài toán tích phân mới từ một số bài toán tích phân cơ bản” .
Trong khi viết đề tài này, bản thân không tránh khỏi những sai sót, rất mong Sở Giáo dục và các anh chị đồng nghiệp góp ý chân thành để tôi rút kinh nghiệm cho những năm sau viết tốt hơn.
2. Hướng phổ biến áp dụng đề tài:
Đề tài đã được thực hiện có hiệu quả ở lớp 12A ; sẽ được phổ biến trong khối 12 của trường THPT Quang Trung, và các lớp khối 12 trung học phổ thông.
3. Hướng nghiên cứu tiếp của đề tài:
Khai thác thêm các bài toán tích phân cần phải sử dụng kết hợp cả hai phương pháp( phương pháp đổi biên và phương pháp từng phần) để giải. Bổ sung vào đề tài và thực nghiệm thêm nhiều lớp khối 12 trường THPT Quang Trung.
 Quang Trung, ngày 19 tháng 05 năm 2012
 	 Người viết
 Đinh Quang Đạo
Nhận xét , đánh giá xếp loại của Hội đồng khoa học trường THPT Quang Trung:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Tài liệu tham khảo
1.Nguyễn Thế Thạch (Chủ biên) và các tác giả: Hướng dẫn thực hiện chương trình, sách giáo khoa lớp 12- NXBGD,2008.
2.Trần Văn Hạo (Tổng chủ biên)- Vũ Tuấn (chủ biên) và các tác giả: Giải tích 12 – NXBGD,2008.
3. Bộ Giáo dục và Đào tạo :Đề thi tuyển sinh – Môn Toán - NXBGD,1996.
4. Trần Văn Hạo (Chủ biên) và các tác giả: Chuyên đề luyện thi vào đại học Giải tích – đại số tổ hợp-NXBGD,2002. 
5. Bộ Giáo dục và Đào tạo :Tạp chí Toán học& Tuổi trẻ-NXBGD.
6. Sở Giáo dục và Đào tạo Nghệ An : Kỷ yếu hội thảo đổi mới cách dạy, cách học bộ môn Toán trung học phổ thông,2008.
 MỤC LỤC
	Trang
MỞ ĐẦU	01
Lý do chọn đề tài	01
Đối tượng nghiên cứu 	01
Phạm vi nghiên cứu 	01
Phương pháp nghiên cứu 	02
NỘI DUNG 	02
Cơ sở lý luận 	02
Cơ sở thực tiễn 	03
Nội dung vấn đề 	03
KẾT LUẬN 	20
Bài học kinh nghiệm 	20
Hướng phổ biến áp dụng đề tài 	21
Hướng nghiên cứu tiếp của đề tài 	21
Tài liệu tham khảo ....................................................................22

File đính kèm:

  • docchuong bo.doc