Đề thi chọn học sinh giỏi giải Toán trên máy tính casio - Đề số 24
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi giải Toán trên máy tính casio - Đề số 24, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI CHỌN HỌC SINH GIỎI GIẢI TOÁN TRÊN MÁY TÍNH CASIO ĐỀ SỐ 24 Học sinh điền kết quả của mỗi câu hỏi vào ô trống, nếu không có yêu cầu gì thêm thì điền kết quả với độ chính xác tới 5 chữ số thập phân Bài 1:(5 điểm) : Dân số một nước là 65 triệu, mức tăng dân số là 1,2% / năm. Tính dân số nước ấy sau 15 năm. Dân số nước đó sau n năm sẽ vượt 100 triệu. Tìm n bé nhất. Cách giải Kết quả a) a) b) b) Bài 2: (5 điểm) Tìm số dư trong các phép chia sau: a) 1234567890987654321 chia cho 207207 (2,5 điểm) b) chia cho 2007 (2,5 điểm) Cách giải Kết quả a) Số dư: b) Số dư: Bài 3:(5 điểm) Tìm thương và số dư trong phép chia đa thức:P(x) = 5x6+2x5-7x4+2x2–6x +9 cho nhị thức x + 5 . Tìm giá trị của đa thức P(x) tại x = 3 Cách giải Kết quả Thương Q(x) = Số dư r = P(3) = Bài 4: (5 điểm) Tính gần đúng các nghiệm (độ, phút, giây) của phương trình: Cách giải Kết quả Bài 5: Cho dãy số: a1 = 1; a2 = 2; an+2 = an+1 + an, với n > 0. Tính a10 và tổng S10 của 10 số hạng đầu tiên. Cách giải Kết quả a) a) u10 b) b) S10 Bài 6: (5 điểm) Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm sốtại tiếp điểm có hoành độ Cách giải Kết quả a b Bài 7: (5 điểm) Tìm nghiệm gần đúng (với 9 chữ số ở phần thập phân) của phương trình: cosx = 3x Cách giải Kết quả x Bài 8: (5 điểm) Cho tứ diện ABCD có các cạnh AB =, BC = ,CD = ,BD= và chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) là trọng tâm của tam giác BCD. Tính VABCD. Cách giải Kết quả VABCD » Bài 9: (5 điểm) Tìm hai chữ số tận cùng của số A = 2999. B = 3999. Cách giải Kết quả a) a) b) b) Bài 10: (5 điểm) Cho hai đường tròn có phương trình tương ứng là: x2 + y2 – 2x – 6y –6 = 0 và x2 + y2 – 2x + 3y – 2 = 0 Tính gần đúng toạ độ các giao điểm của hai đường tròn đó Tìm a và b để đường tròn có phương trình: x2 + y2 + ax + by – 4 = 0 cũng đi qua 2 giao điểm trên Cách giải Kết quả a) a) b) b) Bài 1:(5 điểm) : Dân số một nước là 65 triệu, mức tăng dân số là 1,2% / năm. Tính dân số nước ấy sau 15 năm. Dân số nước đó sau n năm sẽ vượt 100 triệu. Tìm n bé nhất. Cách giải Kết quả a) Áp dụng công thức A = a(1 + r)n với a = 65 triệu, r = 1,2%/năm và n =15 ta được A = 77735794,96 người a) 77735795 người b) Từ công thức A = a(1 + r)n, suy ra n = . Thay số ta được n 36,11. b) 37 năm Bài 2: (5 điểm) Tìm số dư trong các phép chia sau: a) 1234567890987654321 chia cho 207207 (2,5 điểm) b) chia cho 2007 (2,5 điểm) Cách giải Kết quả a) Ta cắt ra thành nhóm đầu 9 chữ số rồi tìm số dư của phép chia 123456789 cho 207207 được: 123456789 – 207207 x 595 = 168624 Viết liên tiếp sau số dư đó các số tiếp theo ở số bị chia (kể từ trái)tối đa đủ 9 chữ số: 168624098 – 207207 x 813 = 164807 164807765 – 207207 x 795 = 78200 782004321 – 207207 x 3774 = 5103 Số dư: 5103 b) Số dư: 1899 Bài 3:(5 điểm) Tìm thương và số dư trong phép chia đa thức:P(x) = 5x6+2x5-7x4+2x2–6x +9 cho nhị thức x + 5 . Tìm giá trị của đa thức P(x) tại x = 3 Cách giải Kết quả Lược đồ Hoocne: 5 2 -7 0 2 -6 9 -5 5 -23 108 -540 2702 -13516 67589 Thương Q(x) = 5x5 - 23x4 + 108x3 - 540x2 + 2702x - -13516 Số dư r = 67589 P(3) = 3573 Bài 4: (5 điểm) Tính gần đúng các nghiệm (độ, phút, giây) của phương trình: Cách giải Kết quả Bài 5: Cho dãy số: a1 = 1; a2 = 2; an+2 = an+1 + an, với n > 0. Tính a10 và tổng S10 của 10 số hạng đầu tiên. Cách giải Kết quả a) Gán D = 2; A = 1; B = 2; C = 3. Nhập biểu thức: D = D + 1: A = B + A : C = C + A : D = D + 1: B = A + B : C = C + B. Bấm đến khi D = 10, bấm được u10. a) a10 0,64131 b) Bấm thêm một lần nữa được S10. b) S10 10,67523 Bài 6: (5 điểm) Tính gần đúng giá trị của a và b nếu đường thẳng y = ax + b là tiếp tuyến của đồ thị hàm sốtại tiếp điểm có hoành độ Cách giải Kết quả . Ghi vào màn hình: b = y – ax =- ax a-0,04604 b 0,74360 Bài 7: (5 điểm) Tìm nghiệm gần đúng (với 9 chữ số ở phần thập phân) của phương trình: cosx = 3x Cách giải Kết quả Để ở chế độ R. Ghi vào màn hình phương trình trên, rồi dùng phím SOLVE để giải hoặc: cosx = 3x= g(x). Chọn x1 tuỳ ý rồi ấn . Ghi vào màn hình: cos Ans 3 ... . x0,316750828 Bài 8: (5 điểm) Cho tứ diện ABCD có các cạnh AB =, BC = ,CD = , BD = và chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) là trọng tâm của tam giác BCD. Tính VABCD. Cách giải Kết quả Đặt a = AB =; b = CD =; c = BD =; d = BC = Ta có nửa chu vi tam giác BCD: p = (b + c + d)/2 và S = Trung tuyến BB’ = Þ BG = BB’ = Þ AG = . Vậy V = S.AG VABCD » 711,37757 (đvtt) Bài 9: (5 điểm) Tìm hai chữ số tận cùng của số A = 2999. B = 3999. Cách giải Kết quả a) 2999 = 220.49 + 19 = (220)49.219. Ta có 220 tận cùng bằng 76 nên (220)49 tận cùng bằng 76; 219 tận cùng bằng 88. Ta có 76.88 tận cùng là 88. a) 88 b) 3999 = 320.49 + 19 = (320)49.219. Ta có 320 tận cùng bằng 01 nên (320)49 tận cùng bằng 01; 319 tận cùng bằng 67. Do đó 3999 tận cùng bằng 67. b) 67 Bài 10: (5 điểm) Cho hai đường tròn có phương trình tương ứng là: x2 + y2 – 2x – 6y –6 = 0 và x2 + y2 – 2x + 3y – 2 = 0 Tính gần đúng toạ độ các giao điểm của hai đường tròn đó Tìm a và b để đường tròn có phương trình: x2 + y2 + ax + by – 4 = 0 cũng đi qua 2 giao điểm trên Cách giải Kết quả a) Trừ (1) và (2) Þ -9y - 4 = 0 Û y = - (3) Thay (3) vào (1) Þ x2 - 2x + ()2 - 6()2 - 6 = 0. a) b) Û b)
File đính kèm:
- Dethi MTBT_6 (19).doc