Đề thi chọn học sinh giỏi lớp 9 năm 2012 – 2013 môn thi: Toán

doc1 trang | Chia sẻ: minhhong95 | Lượt xem: 704 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi lớp 9 năm 2012 – 2013 môn thi: Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO
TP. ĐÀ NẴNG
Đề thi chính thức
ĐỀ THI CHỌN HỌC SINH GIỎI LỚP 9
NĂM HỌC 2012 – 2013
MÔN THI: TOÁN – LỚP 9 THCS
(Thời gian làm bài 150 phút không kể thời gian giao đề)
Bài 1. (2,5 điểm)
Cho biểu thức  với 
a/ Rút gọn biểu thức  với 
b/ Tìm tất cả các giá trị  sao cho P là một số nguyên tố.
Bài 2. (2,0 điểm)
a/ Tìm x, biết: 
b/ Giải hệ phương trình: 
Bài 3. (2,0 điểm)
a/ Cho hàm số bậc nhất y = ax + b có đồ thị đi qua điểm M(1;4). Biết rằng đồ thị của hàm số đã cho cắt trục Ox tại điểm P có hoành độ dương và cắt trục Oy tại điểm Q có tung độ dương. Tìm a và b sao cho OP + OQ nhỏ nhất (với O là gốc tọa độ)
b/ Tìm số tự nhiên có 2 chữ số. Biết rằng nếu lấy tổng của 2 chữ số ấy cộng với 3 lần tích của 2 chữ số ấy thì bằng 17.
Bài 4. (2,0 điểm)
Cho tam giác ABC. Gọi I là tâm đường tròn nội tiếp tam giác ABC, qua I vẽ đường thẳng vuông góc với đường thẳng CI, đường thẳng này cắt các cạnh AC, BC lần lượt tại M và N.
a/ Chứng minh rằng hai tam giác IAM và BAI đồng dạng.
b/ Chứng minh rằng 
Bài 5. (1,5 điểm)
Cho tam giác ABC có  là góc tù. Vẽ các đường cao CD và BE của tam giác ABC (D nằm trên đường thẳng AB, E nằm trên đường thẳng AC). Gọi M,N lần lượt là chân đường vuông góc của các điểm B và C trên đường thẳng DE. Biết rằng  là diện tích tam giác ADE,  là diện tích tam giác BEM và  là diện tích tam giác CDN. Tính diện tích tam giác ABC theo .

File đính kèm:

  • docĐề HSG Đà Nẵng 2013 không đáp án.doc