Đề thi chọn học sinh giỏi Môn: Toán 8 Huyện Thuỷ Nguyên Đề 13

doc4 trang | Chia sẻ: dethi | Lượt xem: 1057 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi Môn: Toán 8 Huyện Thuỷ Nguyên Đề 13, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên

UBND HUYỆN THỦY NGUYÊN
ĐỀ THI CHỌN HỌC SINH GIỎI
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

Môn : Toán – Lớp 8
Thời gian: 120 phút ( không kể thời gian giao đề)
Bài 1: ( 1,5 điểm) 
Thực hiện phép tính:
a) 216 – ( 2 + 1)(22 + 1)(24 + 1)(28 + 1)
b) ( 2x3 – 26x – 24) : ( 2x – 8)
c)
Bài 2: ( 2 điểm) 
Phân tích các đa thức sau thành nhân tử:
a) (xy + 1)2 – 2(x + y)2
b) 3x2 + 11x + 6
c) x2 + 2xy + y2 – 3x – 3y – 10
Bài 3: (2 điểm)
a) Xác định các hệ số a và b sao cho đa thức 2x3 + ax + b chia cho x + 1 dư -6, chia cho 
x – 2 dư 21
b) Tìm giá trị nhỏ nhất của biểu thức 
Bài 4 :(1 điểm) 
Cho 3a2 + b2 = 4ab. Tính giá trị của biểu thức 
Bài 5: ( 2,5 điểm)
 Cho hình chữ nhật ABCD, H và I lần lượt là hình chiếu của B và D trên AC, gọi M, O, K lần lượt là trung điểm của AH, HI và CD.
a) Chứng minh: B và D đối xứng qua O
b) Chứng minh: BM MK
Bài 6: ( 1 điểm) 
Cho hình bình hành ABCD. M là một điểm bất kì trên cạnh CD. AM cắt BD ở O. Chứng minh rằng: SABO = SDMO + SBMC
 ---------------Hết---------------




UBND HUYỆN THỦY NGUYÊN
HƯỚNG DẪN CHẤM THI CHỌN HSG
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
MÔN: TOÁN 8

ĐÁP ÁN
ĐIỂM
Bài 1
( 1,5 đ)
(Mỗi ý 0,5 đ) 
a) 216 – ( 2 + 1)(22 + 1)(24 + 1)(28 + 1)
 =216 – (2 – 1)( 2 + 1)(22 + 1)(24 + 1)(28 + 1)
 =216 – ( 22 - 1)(22 + 1)(24 + 1)(28 + 1)
 =216 – (24 - 1)(24 + 1)(28 + 1)
 =216 – (28 - 1)(28 + 1)
 =216 – (216 - 1)
 = 1


0,125 đ
0,125 đ
0,125 đ

0,125 đ

b) ( 2x3 – 26x – 24) : ( 2x – 8)
Đặt phép chia:
Vậy: ( 2x3 – 26x – 24) : ( 2x – 8) = x2 + 4x + 3
0,25 đ

0,25 đ






0,125đ

0.125đ


0,25đ
Bài 2: 
( 2 đ) 

a) (xy + 1)2 – 2(x + y)2
=( xy + 1)2 - 
 =[ xy + 1 + .(x + y)].[xy + 1 - .(x + y)]

0,25 đ

0,25 đ

b) 3x2 + 11x + 6
 = (3x2 + 9x )+ (2x + 6)
 = 3x( x + 3) + 2(x + 3)
 = (x+ 3)(3x + 2)


0,25đ
0.25đ
0,25đ

c) x2 + 2xy + y2 – 3x – 3y – 10
 = (x2 + 2xy + y2 ) – (3x + 3y) – 10
 =( x + y)2 – 3(x + y) – 10
 =[ ( x + y)2 + 2(x + y)] – [5(x + y) + 10]
 =(x + y) (x + y + 2) – 5(x + y + 2)
 =(x + y + 2)(x + y – 5)


0,125 đ
0,125 đ
0,25 đ
0,25 đ
Bài 3: 
(2 đ)
 
a) Đa thức 2x3 + ax + b chia cho x + 1 dư -6 => - a + b = -4 (1)
 Đa thức 2x3 + ax + b chia cho x - 2 dư 21 => 2a + b = 5 (2)
Từ (1) và (2), suy ra a = 3; b= -1
0,25đ
0,25đ
0,5đ

b) Ta có: ( với y = )
A= (y2 – 2y + 1) +3 = (y – 1)2 + 3 ≥ 3 với mọi giá trị của y
Vậy : GTNN của A bằng 3 khi y – 1 = 0 y = 1x = 1

0,25đ
0,5đ
0,25đ
Bài 4 :
(1 đ) 

Điều kiện : a ≠ -b
Từ g/t : 3a2 + b2 = 4ab4a2 – 4ab + b2 – a2 = 0
 ( 2a – b)2 – a2 = 0
 ( 3a – b)(a – b) = 0
 a = b/3 hoặc a = b ( tm)
+) Nếu a = b/ 3 thì P = -1/2
+) Nếu a = b thì P = 0
0,125đ
0,125đ
0,125đ
0,125đ
0,25đ
0,125đ
0,125đ
Bài 5: 
( 2,5 đ)

Vẽ hình đúng cho câu a)
0,25đ

a)-Chứng minh tứ giác BHDI là hình bình hành
 -có O là trung điểm của HI (gt) => O là trung điểm của BC
 => B và D đối xứng qua O
0.75 đ

b) Qua M, kẻ đường thẳng song song với AB cắt BH tại N
=> MN BC, và N là trung điểm của BH
=> MN là đường trung bình của tam giác AHB
=> MN // AB và MN = ½ AB
* Chứng minh tứ giác MNCK là hình bình hành => CN//KM (1)
* Tam giác BMC có N là trực tâm => CN BM (2)
Từ (1) và (2) suy ra BM MK



0,5đ
0,5đ
0,5đ
Bài 6:
 ( 1 đ) 




-Chứng minh: SADB = SAMB => SADO = SBOM (1)
-Chứng minh: SADB = SBCD
 =>SDAO + SAOB = SDOM + SBOM + SBMC(2)
Từ (1) và (2) Suy ra S ABO = SDOM +SBCM
0,25đ
0,25đ
0,25đ
0,25đ

File đính kèm:

  • docToan 8_HSG_13.doc
Đề thi liên quan