Đề thi chọn học sinh giỏi quốc gia lớp 12 THPT năm 2011 môn Toán

pdf1 trang | Chia sẻ: minhhong95 | Lượt xem: 587 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi quốc gia lớp 12 THPT năm 2011 môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO 
ĐỀ THI CHÍNH THỨC 
KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA 
LỚP 12 THPT NĂM 2011 
Môn: TOÁN 
Thời gian: 180 phút (không kể thời gian giao đề) 
Ngày thi thứ nhất: 11/01/2011 
Bài 1 (5,0 điểm). Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, 
ta có bất đẳng thức: 
2 11( 1) 1
21
nn n
n
x x x
x
++ + +⎛ ⎞≤ ⎜ ⎟+ ⎝ ⎠ . 
Hỏi đẳng thức xảy ra khi nào? 
Bài 2 (5,0 điểm). Cho dãy số thực (xn) xác định bởi 
1 1x = và 
1
2
1
2 .
( 1)
n
n
i
n
ix xn
−
=
= − ∑ với mọi n ≥ 2. 
Với mỗi số nguyên dương n, đặt yn = xn + 1 – xn. 
Chứng minh rằng dãy số (yn) có giới hạn hữu hạn khi n → + ∞. 
Bài 3 (5,0 điểm). Trong mặt phẳng, cho đường tròn (O) đường kính AB. Xét một 
điểm P di động trên tiếp tuyến tại B của (O) sao cho P không trùng với B. Đường 
thẳng PA cắt (O) tại điểm thứ hai C. Gọi D là điểm đối xứng với C qua O. Đường 
thẳng PD cắt (O) tại điểm thứ hai E. 
 1/ Chứng minh rằng các đường thẳng AE, BC và PO cùng đi qua một điểm. 
Gọi điểm đó là M. 
 2/ Hãy xác định vị trí của điểm P sao cho tam giác AMB có diện tích lớn 
nhất. Tính giá trị lớn nhất đó theo bán kính của đường tròn (O). 
 ((O ) kí hiệu đường tròn tâm O ). 
Bài 4 (5,0 điểm). Cho ngũ giác lồi ABCDE có độ dài mỗi cạnh và độ dài các đường 
chéo AC, AD không vượt quá 3 . Lấy 2011 điểm phân biệt tùy ý nằm trong ngũ 
giác đó. Chứng minh rằng tồn tại một hình tròn đơn vị có tâm nằm trên cạnh của 
ngũ giác đã cho chứa ít nhất 403 điểm trong số các điểm đã lấy. 
----------------------------HẾT--------------------------- 
• Thí sinh không được sử dụng tài liệu và máy tính cầm tay. 
• Giám thị không giải thích gì thêm. 

File đính kèm:

  • pdfDeToanHSG2011Ngay1.pdf