Đề thi chọn học sinh giỏi quốc gia lớp 12 THPT năm 2011 môn Toán học

pdf1 trang | Chia sẻ: minhhong95 | Lượt xem: 622 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi quốc gia lớp 12 THPT năm 2011 môn Toán học, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO 
ĐỀ THI CHÍNH THỨC 
KỲ THI CHỌN HỌC SINH GIỎI QUỐC GIA 
LỚP 12 THPT NĂM 2011 
Môn: TOÁN 
Thời gian: 180 phút (không kể thời gian giao đề) 
Ngày thi thứ hai: 12/01/2011 
Bài 5 (7,0 điểm). Cho dãy số nguyên (an) xác định bởi 
0 11, 1a a= = − và 16 5n n na a a 2− −= + với mọi n ≥ 2. 
Chứng minh rằng chia hết cho 2011. 2012 2010a −
Bài 6 (7,0 điểm). Cho tam giác ABC không cân tại A và có các góc nABC , nACB là 
các góc nhọn. Xét một điểm D di động trên cạnh BC sao cho D không trùng với B, 
C và hình chiếu vuông góc của A trên BC. Đường thẳng d vuông góc với BC tại D 
cắt các đường thẳng AB và AC tương ứng tại E và F. Gọi M, N và P lần lượt là tâm 
đường tròn nội tiếp các tam giác AEF, BDE và CDF. Chứng minh rằng bốn điểm 
A, M, N, P cùng nằm trên một đường tròn khi và chỉ khi đường thẳng d đi qua tâm 
đường tròn nội tiếp tam giác ABC. 
Bài 7 (6,0 điểm). Cho n là số nguyên dương. Chứng minh rằng đa thức 
( , ) n nP x y x xy y= + + 
không thể viết được dưới dạng 
( , ) ( , ). ( , )P x y G x y H x y= , 
trong đó G(x, y) và H(x, y) là các đa thức với hệ số thực, khác đa thức hằng. 
----------------------------HẾT--------------------------- 
• Thí sinh không được sử dụng tài liệu và máy tính cầm tay. 
• Giám thị không giải thích gì thêm. 

File đính kèm:

  • pdfDeToanHSG2011Ngay2.pdf