Đề thi chọn học sinh giỏi toán 9 thành phố Hà nội năm học 2010 - 2011
Bạn đang xem nội dung tài liệu Đề thi chọn học sinh giỏi toán 9 thành phố Hà nội năm học 2010 - 2011, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI CHỌN HỌC SINH GIỎI TOÁN 9 THÀNH PHỐ HÀ NỘI Năm học 2010 - 2011 Thời gian làm bài 150 phút Bài 1 (2 điểm): Rút gọn biểu thức: Bài 2 (5 điểm): [*] Giải phương trình [*] Cho các số thực thay đổi và thoả mãn . Tìm khi lần lượt đạt được giá trị lớn nhất, giá trị nhỏ nhất. Bài 3 (5 điểm): [*] Tìm 7 số nguyên dương sao cho tích các bình phương của chúng bằng 2 lần tổng các bình phương của chúng. [*] Cho các số thực không âm thay đổi và thoả mãn . Tìm giá trị lớn nhất và giá trị nhỏ nhất của Bài 4 (6 điểm): Cho tam giác nội tiếp đường tròn đường kính . [*] Vẽ về phía ngoài tam giác nửa đường tròn đường kính và nửa đường tròn đường kính . Đường thẳng qua cắt hai nửa đường tròn lần lượt tại các điểm ( khác và khác ). Tính các góc của tam giác khi diện tích tam giác bằng 3 lần diện tích tam giác . [*] Cho và điểm thuộc cạnh sao cho . Gọi điểm là hình chiếu của điểm trên đường thẳng và điểm là hình chiếu của điểm trên đường thẳng . So sánh và với . Bài 5 (2 điểm): Hai người chơi trò chơi như sau: Trong hộp có 311 viên bi, lần lượt từng người lấy k viên bi, với . Người thắng là người lấy được viên bi cuối cùng trong hộp bi đó. [*] Hỏi người thứ nhất hay người thứ hai thắng và chiến thuật chơi thế nào để thắng? [*] Cũng hỏi như câu trên, khi đề bài thay 311 viên bi bằng n viên bi, với n là số nguyên dương? NKL-Sưu tầm
File đính kèm:
- De thi HSG mon ToanHa noi.pdf