Đề thi học kỳ 2 Toán 11 - Đề 23
Bạn đang xem nội dung tài liệu Đề thi học kỳ 2 Toán 11 - Đề 23, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
đề 23 Câu 1: (2,0 điểm) Tìm các giới hạn sau: a) b) Câu 2: (1,0 điểm) Tìm a để hàm số sau liên tục tại điểm x = 0: Câu 3: (1,0 điểm) Tính đạo hàm của các hàm số sau: a) b) Câu 4: (3,0 điểm) Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC. a) Chứng minh AC ^ SD. b) Chứng minh MN ^ (SBD). c) Cho AB = SA = a. Tính cosin của góc giữa (SBC) và (ABCD). Câu 5a: (1,0 điểm) Chứng minh rằng phương trình sau luôn có nghiệm với mọi m: Câu 6a: (2,0 điểm) Cho hàm số có đồ thị (C). a) Giải phương trình: . b) Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ . Câu 5b: Chứng minh rằng phương trình sau luôn có nghiệm với mọi m: Câu 6b: (2,0 điểm) Cho hàm số có đồ thị (C). a) Giải bất phương trình: . b) Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của (C) với trục hoành.
File đính kèm:
- toan11hk2d23.doc