Đề thi học kỳ 2 Toán 11 - Đề 58
Bạn đang xem nội dung tài liệu Đề thi học kỳ 2 Toán 11 - Đề 58, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Câu 1: Tính các giới hạn sau: a) b) Câu 2 (1 điểm): Cho hàm số Xét tính liên tục của hàm số tại Câu 3 (1 điểm): Chứng minh rằng phương trình sau có ít nhất một nghiệm trên [0; 1]: . Câu 4 (1,5 điểm): Tính đạo hàm của các hàm số sau: a) b) Câu 5 (2,5 đ): Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh a, ,đường cao SO = a. a) Gọi K là hình chiếu của O lên BC. Chứng minh rằng: BC (SOK) b) Tính góc giữa SK và mp(ABCD). c) Tính khoảng cách giữa AD và SB. Câu 6a (1,5 điểm): Cho hàm số: (C). a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = 2. b) Viết phương trình tiếp tuyến của đồ thị (C) có hệ số góc k = –1. Câu 7a (1,5 điểm): Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều, SA (ABC), SA= a. M là một điểm trên cạnh AB, , hạ SH CM. a) Tìm quỹ tích điểm H khi M di động trên đoạn AB. b) Hạ AK ^ SH. Tính SK và AH theo a và . Câu 6b (1,5 điểm): Cho các đồ thị (P): và (C): . a) Chứng minh rằng (P) tiếp xúc với (C). b) Viết phương trình tiếp tuyến chung của (P) và (C) tại tiếp điểm. Câu 7b (1,5 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a; SA = SB = SC = SD = . Gọi I và J lần lượt là trung điểm BC và AD. a) Chứng minh rằng: SO (ABCD). b) Chứng minh rằng: (SIJ) (ABCD). Xác định góc giữa (SIJ) và (SBC). c) Tính khoảng cách từ O đến (SBC).
File đính kèm:
- toan11hk2d58.doc