Đề thi học sinh giỏi cấp tỉnh môn : toán lớp 7 thời gian : 150 phút
Bạn đang xem nội dung tài liệu Đề thi học sinh giỏi cấp tỉnh môn : toán lớp 7 thời gian : 150 phút, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Đề thi học sinh giỏi cấp tỉnh Môn : Toán lớp 7 Thời gian : 150 phút Câu 1 ( 2 điểm) Thực hiện phép tính : a- b- Câu 2 ( 2 điểm) Tìm số nguyên a để là số nguyên Tìm số nguyên x,y sao cho x-2xy+y=0 Câu 3 ( 2 điểm) Chứng minh rằng nếu a+c=2b và 2bd = c (b+d) thì với b,d khác 0 Cần bao nhiêu số hạng của tổng S = 1+2+3+ để được một số có ba chữ số giống nhau . Câu 4 ( 3 điểm) Cho tam giác ABC có góc B bằng 450 , góc C bằng 1200. Trên tia đối của tia CB lấy điểm D sao cho CD=2CB . Tính góc ADE Câu 5 ( 1điểm) Tìm mọi số nguyên tố thoả mãn : x2-2y2=1 Đáp án chấm Toán 7 Câu Hướng dẫn chấm Điểm 1.a Thực hiện theo từng bước đúng kết quả -2 cho điểm tối đa 1Điểm 1.b Thực hiện theo từng bước đúng kết quả 14,4 cho điểm tối đa 1Điểm 2.a Ta có : = vì a là số nguyên nên là số nguyên khi là số nguyên hay a+1 là ước của 3 do đó ta có bảng sau : a+1 -3 -1 1 3 a -4 -2 0 2 Vậy với athì là số nguyên 0,25 0,25 0,25 0,25 2.b Từ : x-2xy+y=0 Hay (1-2y)(2x-1) = -1 Vì x,y là các số nguyên nên (1-2y)và (2x-1) là các số nguyên do đó ta có các trường hợp sau : Hoặc Vậy có 2 cặp số x, y như trên thoả mãn điều kiện đầu bài 0,25 0,25 0,25 0,25 3.a Vì a+c=2b nên từ 2bd = c (b+d) Ta có: (a+c)d=c(b+d) Hay ad=bc Suy ra ( ĐPCM) 0,5 0,5 3.b Giả sử số có 3 chữ số là =111.a ( a là chữ số khác 0) Gọi số số hạng của tổng là n , ta có : Hay n(n+1) =2.3.37.a Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1<74 ( Nếu n = 74 không thoả mãn ) Do đó n=37 hoặc n+1 = 37 Nếu n=37 thì n+1 = 38 lúc đó không thoả mãn Nếu n+1=37 thì n = 36 lúc đó thoả mãn Vậy số số hạng của tổng là 36 0,25 0,25 0,5 4 Kẻ DH Vuông góc với AC vì ACD =600 do đó CDH = 300 Nên CH = CH = BC Tam giác BCH cân tại C CBH = 300 ABH = 150 Mà BAH = 150 nên tam giác AHB cân tại H Do đó tam giác AHD vuông cân tại H Vậy ADB = 450+300=750 0,5 0,5 1,0 1,0 5 Từ : x2-2y2=1suy ra x2-1=2y2 Nếu x chia hết cho 3 vì x nguyên tố nên x=3 lúc đó y= 2 nguyên tố thoả mãn Nếu x không chia hết cho 3 thì x2-1 chia hết cho 3 do đó 2y2 chia hết cho 3 Mà(2;3)=1 nên y chia hết cho 3 khi đó x2=19 không thoả mãn Vậy cặp số (x,y) duy nhất tìm được thoả mãn điều kiện đầu bài là (2;3) 0,25 0,25 0,25 0,25
File đính kèm:
- HSG Toan L6.doc