Đề thi học sinh giỏi lớp 9 THCS môn Toán
Bạn đang xem nội dung tài liệu Đề thi học sinh giỏi lớp 9 THCS môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI HỌC SINH GIỎI LỚP 9 THCS (Vĩnh Linh - Quảng Trị ) Bài 1 : Chứng minh rằng :(n3-n) chia hết cho 6 với mọi số nguyên n Bài 2 : Chứng minh rằng : n3+20n chia hết cho 48 với mọi n là số nguyên chẳn Bài 3 : Cho x2 – y = a ; y2 – z = b ; z2 – x = c . Hãy tính theo a, b, c giá trị của biểu thức : P = x3(z- y 2)+y3(x- z 2)+x3(y- x 2) + xyz(xyz - 1) Bài 4 : Xác định các giá trị của a, b sao cho với mọi x ta đều có : Bài 5 : Cho . Chứng minh rằng T < 1 với mọi Bài 6 : Cho tam giác ABC có AM là trung tuyến . Kẻ AD vuông góc với BA ; AE vuông góc với CA ; AE = CA (D thuộc nửa mặt phẳng không chứa C có bờ là AB ; E thuộc nửa mặt phẳng không chứa B có bờ là AC ). Chứng minh MA kéo dài cắt DE tại H . Chứng minh AH vuông góc với DE Với điều kiện nào của tam giác ABC thì BC = DE
File đính kèm:
- De thi hoc sinh gioi lop 91VLQT.doc