Đề thi học sinh giỏi Toán Lớp 9 - Năm học 2011-2012 - Sở GD&ĐT Quảng Nam

doc1 trang | Chia sẻ: thuongnguyen92 | Lượt xem: 290 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi học sinh giỏi Toán Lớp 9 - Năm học 2011-2012 - Sở GD&ĐT Quảng Nam, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC & ĐÀO TẠO
QUẢNG NAM
KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 THCS
Năm học 2011-2012
ĐỀ CHÍNH THỨC
Môn thi: TOÁN
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 03/04/2012
Câu 1: (2,0 điểm)
	Thực hiện tính:
Câu 2: (4,0 điểm)
Chứng minh: 
Tìm a, b thuộc N* sao cho:
Câu 3: (6,0 điểm)
Giải phương trình: 
Tìm k để phương trình: x2 - (2 + k)x + 3k = 0 có 2 nghiệm phân biệt x1; x2 sao cho x1; x2 là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng 10.
Cho biểu thức: A, với .
Tìm giá trị nhỏ nhất của A.
Câu 4: (5,0 điểm)
Cho tam giác nhọn ABC (AB<AC) nội tiếp (O;R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại I.
Chứng minh I là tâm đường tròn nội tiếp tam giác DEF.
Giả sử góc BAC=600. Tính diện tích tứ giác AEOF theo R.
Câu 5: (3,0 điểm)
Cho đường tròn (O) nội tiếp tam giác đều ABC. Một tiếp tuyến của đường tròn (O) cắt các cạnh AB và AC của tam giác ABC theo thứ tự ở P và Q.
	Chứng minh rằng:
PQ2+AP.AQ=AP2+AQ2
---------------------- Hết ------------------------

File đính kèm:

  • docDe thi hoc sinh gioi Toan 9 THCS tinh Quang Nam namhoc 1112.doc