Đề thi Toán quốc tế 2007

pdf2 trang | Chia sẻ: huu1989 | Lượt xem: 980 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi Toán quốc tế 2007, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Vietnamese version Bản tiếng Việt
Ngày thứ nhất
25 tháng 7 năm 2007
Bài 1. Cho trước các số thực a1, a2, . . . , an. Với mỗi i (1 ≤ i ≤ n) đặt
di = max{aj : 1 ≤ j ≤ i} −min{aj : i ≤ j ≤ n}
và đặt
d = max{di : 1 ≤ i ≤ n}.
a) Chứng minh rằng, với các số thực x1 ≤ x2 ≤ ... ≤ xn tùy ý , ta có
max{|xi − ai| : 1 ≤ i ≤ n} ≥ d
2
. (*)
b) Hãy chỉ ra rằng tồn tại các số thực x1 ≤ x2 ≤ ... ≤ xn sao cho bất
đẳng thức (*) trở thành đẳng thức.
Bài 2. Xét năm điểm A, B, C, D và E sao cho ABCD là một hình bình
hành và BCED là một tứ giác nội tiếp. Cho ` là một đường thẳng đi qua
A. Giả sử rằng ` cắt miền trong của đoạn thẳng DC tại F và cắt đường
thẳng BC tại G. Cũng giả sử rằng EF = EG = EC. Chứng minh rằng `
là phân giác của góc D̂AB.
Bài 3. Trong một kỳ thi học sinh giỏi toán có một số thí sinh là bạn bè
của nhau. Quan hệ bạn bè luôn là quan hệ hai chiều. Gọi một nhóm các
thí sinh là nhóm bạn bè nếu như hai người bất kỳ trong nhóm này là bạn
bè của nhau. (Một nhóm tùy ý ít hơn hai thí sinh cũng vẫn được coi là
một nhóm bạn bè). Số lượng các thí sinh của một nhóm bạn bè được gọi
là cỡ của nó.
Cho biết rằng, trong kỳ thi này, cỡ của một nhóm bạn bè có nhiều người
nhất là một số chẵn. Chứng minh rằng có thể xếp tất cả các thí sinh vào
hai phòng sao cho cỡ của nhóm bạn bè có nhiều người nhất trong phòng
này cũng bằng cỡ của nhóm bạn bè có nhiều người nhất trong phòng kia.
Thời gian làm bài: 4 giờ 30 phút
Mỗi bài được 7 điểm
Vietnamese version Bản tiếng Việt
Ngày thứ hai
26 tháng 7 năm 2007
Bài 4. Trong tam giác ABC, đường phân giác của góc B̂CA cắt lại
đường tròn ngoại tiếp tam giác tại R, cắt đường trung trực của BC tại
P , và đường trung trực của AC tại Q. Trung điểm của BC là K và trung
điểm của AC là L. Chứng minh rằng tam giác RPK và tam giác RQL có
diện tích bằng nhau.
Bài 5. Cho trước a và b là hai số nguyên dương. Chứng minh rằng nếu
(4ab− 1) là ước số của (4a2 − 1)2 thì a = b.
Bài 6. Cho n là một số nguyên dương. Xét
S = {(x, y, z) : x, y, z ∈ {0, 1, ..., n}, x+ y + z > 0}
như là một tập hợp gồm (n+ 1)3 − 1 điểm trong không gian 3-chiều. Hãy
xác định số nhỏ nhất có thể các mặt phẳng mà hợp của chúng chứa tất cả
các điểm của S nhưng không chứa điểm (0, 0, 0).
Thời gian làm bài: 4 giờ 30 phút
Mỗi bài được 7 điểm

File đính kèm:

  • pdfDe Thi Vietnam Quoc te 2007.pdf