Đề thi tuyển sinh cao đẳng năm 2009 môn thi: Toán, khối B
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh cao đẳng năm 2009 môn thi: Toán, khối B, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2009 Môn: TOÁN; Khối: B Thời gian làm bài:180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số với là tham số thực. 3 2(2 1) (2 ) 2 (1),y x m x m x= − − + − + m 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (1) 2.m = 2. Tìm các giá trị của để hàm số (1 có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương. m ) (1) Câu II (2,0 điểm) 1. Giải phương trình 2(1 2sin ) cos 1 sin cos .x x x+ = + + x 2. Giải bất phương trình 1 2 2 5 1 ( ).x x x x+ + − ≤ + ∈\ Câu III (1,0 điểm) Tính tích phân 1 2 0 ( )x x .I e x e d−= +∫ x Câu IV (1,0 điểm) Cho hình chóp tứ giác đều có .S ABCD , 2AB a SA a= = . Gọi ,M N và lần lượt là trung điểm của các cạnh và CD Chứng minh rằng đường thẳng P ,SA SB . MN vuông góc với đường thẳng Tính theo thể tích của khối tứ diện .SP a .AMNP Câu V (1,0 điểm) Cho và là hai số thực thỏa mãn 0a b 1.a b − PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ cho tam giác có C,Oxy ABC ( 1; 2),− − đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình là 5 9x y 0+ − = và 3 5 0x y .+ − = Tìm tọa độ các đỉnh A và .B 2. Trong không gian với hệ tọa độ cho các mặt phẳng và Viết phương trình mặt phẳng đi qua điểm vuông góc với hai mặt phẳng và . ,Oxyz 1( ) : 2 3 4 0P x y z+ + + = 2( ) : 3 2 1 0.P x y z+ − + = ( )P (1; 1; 1),A 1( )P 2( )P ) (2 ) 8 (1 2 ) .i i z i i z+ − = + + + y 0 Câu VII.a (1,0 điểm) Cho số phức thỏa mãn (1 Tìm phần thực và phần ảo của . z 2 z B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Ox cho các đường thẳng , 1 : 2 3x yΔ − − = và Tìm tọa độ điểm 2 : 1x yΔ + + = 0. M thuộc đường thẳng 1Δ sao cho khoảng cách từ điểm M đến đường thẳng 2Δ bằng 1 2 ⋅ 2. Trong không gian với hệ tọa độ cho tam giác có và trọng tâm Viết phương trình đường thẳng ,Oxyz ABC (1; 1; 0), (0; 2; 1)A B (0; 2; 1).G − Δ đi qua điểm và vuông góc với mặt phẳng C ( ).ABC Câu VII.b (1,0 điểm) Giải phương trình sau trên tập hợp các số phức: 4 3 7 2 .z i z i z i − − = −− ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:.............................................; Số báo danh:................................
File đính kèm:
- De_Toan_B-CD.pdf
- DA_Toan_B-CD.pdf