Đề thi tuyển sinh đại học năm 2009 môn: toán; khối: d thời gian làm bài: 180 phút, không kể thời gian phát đề
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh đại học năm 2009 môn: toán; khối: d thời gian làm bài: 180 phút, không kể thời gian phát đề, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: D Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số 4 2(3 2) 3y x m x= − + + m mC m có đồ thị là là tham số. ( ), 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi 0.m = 2. Tìm m để đường thẳng cắt đồ thị tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2. 1y = − ( mC ) Câu II (2,0 điểm) 1. Giải phương trình 3 cos5 2sin3 cos2 sin 0.x x x x− − = 2. Giải hệ phương trình 2 2 ( 1) 3 0 ( , ).5( ) 1 0 x x y x y x y x + + − =⎧⎪ ∈⎨ + − + =⎪⎩ \ Câu III (1,0 điểm) Tính tích phân 3 1 . 1x dxI e = −∫ Câu IV (1,0 điểm) Cho hình lăng trụ đứng có đáy là tam giác vuông tại . ' ' 'ABC A B C ABC , , ' 2 , ' 3 .B AB a AA a A C a= = = Gọi M là trung điểm của đoạn thẳng ' ',A C I là giao điểm của và Tính theo thể tích khối tứ diện và khoảng cách từ điểm đến mặt phẳng ( AM ' .A C a IABC A ).IBC Câu V (1,0 điểm) Cho các số thực không âm ,x y thay đổi và thoả mãn 1.x y+ = Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2(4 3 )(4 3 ) 25 .S x y y x xy= + + + PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Ox cho tam giác có là trung điểm của cạnh Đường trung tuyến và đường cao qua đỉnh lần lượt có phương trình là y ABC (2;0)M .AB A 7 2 3 0x y− − = và Viết phương trình đường thẳng 6 4 0.x y− − = .AC 2. Trong không gian với hệ toạ độ , cho các điểm và mặt phẳng Xác định toạ độ điểm Oxyz (2;1;0), (1;2;2), (1;1;0)A B C ( ) : 20 0.P x y z+ + − = D thuộc đường thẳng sao cho đường thẳng CD song song với mặt phẳng ( AB ).P Câu VII.a (1,0 điểm) Trong mặt phẳng toạ độ ,Ox tìm tập hợp điểm biểu diễn các số phức thoả mãn điều kiện | y z (3 4 ) | 2.z i− − = B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ , cho đường tròn .Oxy 2 2( ) : ( 1) 1C x y− + = Gọi là tâm của Xác định toạ độ điểm I ( ).C M thuộc sao cho ( )C nIMO = 30 .D 2. Trong không gian với hệ toạ độ , cho đường thẳng Oxyz 2 2: 1 1 1 x y+ −Δ = = − z m và mặt phẳng Viết phương trình đường thẳng nằm trong ( sao cho d cắt và vuông góc với đường thẳng ( ) : 2 3 4 0.P x y z+ − + = d )P .Δ Câu VII.b (1,0 điểm) Tìm các giá trị của tham số để đường thẳng m 2y x= − + cắt đồ thị hàm số 2 1x xy x + −= tại hai điểm phân biệt sao cho trung điểm của đoạn thẳng thuộc trục tung. ,A B AB ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:.............................................; Số báo danh:................................
File đính kèm:
- De_Toan_D.pdf