Đề thi tuyển sinh lớp 10 năm học 2011-2012 Quảng Ngãi môn: Toán
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh lớp 10 năm học 2011-2012 Quảng Ngãi môn: Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC 2011-2012 QUẢNG NGÃI MÔN : TOÁN Bài 1: (1.5 điểm) 1) Thực hiện phép tính: 2 + 3 2) Giải phương trình và hệ phương trình sau: a) x2 – 20x + 96 = 0 x + y = 4023 b) x – y = 1 Bài 2: (2.5điểm) 1) Cho hàm số y = x2 có đồ thị là (P) và đường thẳng (d): y = x + 2 a) Vẽ ( P ) và ( d ) trên cùng một hệ toạ độ Oxy b) Bằng phép tính hãy tìm toạ độ giao điểm của ( P ) và ( d ) 2) Trong cùng một hệ toạ độ Oxy cho 3 điểm: A(2;4);B(-3;-1) và C(-2;1) . Chứng minh 3 điểm A, B, C không thẳng hàng. 3) Rút gọn biểu thức: M = + với x> 0 và x Bài 3: (1.5điểm) Hai bến sông cách nhau 15 km. Thơì gian một ca nô xuôi dòng từ bến A đến bến B, tại bến B nghỉ 20 phút rồi ngược dòng từ bến B trở về bến A tổng cộng là 3 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết vận tốc của dòng nước là 3 km/h. Bài 4: (3.5 điểm) Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO ( C khác A và C khác O ). Đường thẳng đi qua điểm C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M ( với M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. 1. Chứng minh : BCFM là tứ giác nội tiếp đường tròn. 2. Chứng minh EM = EF 3. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh D, I, B thẳng hàng; từ đó suy ra góc ABI có số đo không đổi khi M thay đổi trên cung BD. Bài 5:(1.0 điểm) Cho phương trình ( ẩn x ) : x2 – (2m + 3)x + m = 0. Gọi x1 và x2 là hai nghiệm của phương trình đã cho. Tìm giá trị của m để biểu thức x12 + x22 có giá trị nhỏ nhất. -------- HẾT ---------
File đính kèm:
- Toán TS 10-Quãng Ngãi NH 2011-2012.doc