Đề thi tuyển sinh lớp 10 THPT năm học 1997-1998

doc30 trang | Chia sẻ: dethi | Lượt xem: 2952 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Đề thi tuyển sinh lớp 10 THPT năm học 1997-1998, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
đề thi tuyển sinh LớP 10 thpt
Năm học 1997-1998
Thời gian : 150 phút

Sở gd-đt thái bình
******* 




Bài 1(1 điểm): Phân tích ra thừa số : 
 a) a3+1 ; b) 
Bài 2 (3 điểm):
 Trong hệ trục toạ độ Oxy cho ba điểm A; B(1;0); C(2;8)
Biết điểm A nằm trên Parabol (P) có phương trình y = ax2, xác định a ?
Lập phương trình đường thẳng (d) đi qua hai điểm B và C
Xét vị trí tương đối giữa đường thẳng (d) và Parabol (P)
Bài 3 (2 điểm):
 Giải phương trình: 
Bài 4 (1,5 điểm):
 DABC có AB = AC = 5cm; BC = 6cm. Tính :
Đường cao DABC hạ từ đỉnh A ?
Độ dài đường tròn nội tiếp DABC ?
Bài 5(2 điểm):
Cho hình vuông ABCD. Trên cạnh BC, CD lần lượt lấy điểm E, F sao cho . Biết BD cắt AE, AF theo thứ tự tại G, H. Chứng minh: 
ADFG, GHFE là các tứ giác nội tiếp 
DCGH và tứ giác GHFE có diện tích bằng nhau
Bài 6 (0,5 điểm) Tính thể tích của hình hộp chữ nhật ABCD.A’B’C’D’ biết AB’ = 5; AC = ; AD’ = 

Sở gd-đt thái bình
******* 


đề thi tuyển sinh LớP 10 thpt
Năm học 1998-1999
Thời gian : 150 phút



Bài 1 (2 điểm): So sánh x; y trong mỗi trường hợp sau: 
 a) và ; b) và ; 
 c) x = 2m và y = m + 2
Bài 2 (2 điểm):
Trên cùng hệ trục toạ độ vẽ đồ thị các hàm số (P) và y = x + (d)
Dùng đồ thị cho biết (có giải thích) nghiệm của phương trình : 
Bài 3 (3 điểm):
 Xét hai phương trình: x2 + x + k + 1 = 0 (1) và x2- (k + 2)x + 2k + 4 = 0 (2)
Giải phương trình (1) với k = - 1; k = - 4
Tìm k để phương trình (2) có một nghiệm bằng ? 
Với giá trị nào của k thì hai phương trình trên tương đương ?
Bài 4 (0,5 điểm):
Tam giác vuông ABC có BC = d ; quay một vòng xung quanh AC. Tính thể tích hình nón tạo thành.
Bài 5 (2,5 điểm):
Cho DABC không cân, đường cao AH, nội tiếp trong đường tròn tâm O. Gọi E, F thứ tự là hình chiếu của B, C lên đường kính AD của đường tròn (O) và M, N thứ tự là trung điểm của BC, AB. Chứng minh: 
Bốn điểm A, B, H, E cùng nằm trên đường tròn tâm N và HE// CD.
M là tâm đường tròn ngoại tiếp DHEF.
Sở gd-đt thái bình
******* 

đề thi tuyển sinh LớP 10 thpt
Năm học 1999-2000
Thời gian : 150 phút



Bài 1 (2 điểm):
 Với giá trị nào của x thì các biểu thức sau có nghĩa: 
 1) 2) 3) 4) 
Bài 2 (1 điểm): Giải phương trình: 
Bài 3 (1,5 điểm): Cho hệ phương trình 
Giải hệ với m = 1
Tìm giá trị của m để hệ phương trình có nghiệm
Bài 4 (2 điểm):
 Cho hàm số y = 2x2 	(P)
Vẽ đồ thị hàm số 	(P)
Viết phương trình đường thẳng đi qua điểm (0; -2) và tiếp xúc với (P)
Bài 5 (3,5 điểm):
Cho nửa đường tròn đường kính AB. Gọi H là điểm chính giữa cung AB, gọi M là một điểm nằm trên cung AH; N là một điểm nằm trên dây cung BM sao cho BN = AM. Chứng minh:
DAMH = DBNH
DMHN là tam giác vuông cân
Khi M chuyển động trên cung AH thì đường vuông góc với BM kẻ từ N luôn đi qua một điểm cố định ở trên tiếp tuyến của nửa đường tròn tại điểm B

đề thi tuyển sinh LớP 10 thpt
Năm học 1999-2000
Thời gian : 150 phút

Sở gd-đt thái bình
******* 



Bài 1 (2 điểm):
 Cho biểu thức 
Rút gọn biểu thức A 
Tìm x để A = 3
Bài 2 (2 điểm):
 Cho phương trình x2 - 2(m + 1)x + m2 - 5 = 0
Giải phương trình khi m = 1 
Tìm m để phương trình có nghiệm 
Bài 3 (3 điểm):
Cho đường tròn tâm O đường kính AC. Trên đoạn OC lấy điểm B và vẽ đường tròn (O’) đường kính BC. Gọi M là trung điểm đoạn AB. Từ M kẻ dây cung DE ^ AB. Gọi I là giao của DC với (O’)
Chứng minh ADBE là hình thoi
BI // AD
Chứng minh I, B, E thẳng hàng 
Bài 4 (3 điểm):
 Cho hai hàm số (1) và (2) (m ạ 1)
Vẽ đồ thị các hàm số (1) và (2) trên cùng một hệ trục toạ độ Oxy với m = -1
Vẽ đồ thị các hàm số (1) và (2) trên cùng một hệ trục toạ độ Oxy ở trên với m = 2
Tìm toạ độ giao điểm của các đồ thị hàm số (1) và (2).

đề thi tuyển sinh LớP 10 thpt
Năm học 2000-2001
Thời gian : 150 phút

Sở gd-đt thái bình
******* 
 



Bài 1 (2 điểm):
 So sánh hai số x và y trong mỗi trường hợp sau: 
 	a) x = và y= ; b) và ; 
 	c) x = 2000a và y = 2000 + a (a là tham số)
Bài 2 (2 điểm):
 Cho 
Rút gọn rồi tính số trị của A khi x = 
Tìm x để A > 0
Bài 3 (2 điểm):
Giải hệ phương trình: 
Giải và biện luận phương trình: mx2 + 2(m + 1)x + 4 = 0 (m là tham số)
Bài 4 (3 điểm):
Trên đường thẳng d lấy ba điểm A, C, B theo thứ tự đó. Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vuông góc với d. Trên tia Ax lấy I. Tia vuông góc với IC tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P. 
Chứng minh tứ giác CPKB nội tiếp được đường tròn 
Chứng minh AI.BK = AC.CB
Giả sử A, B, I cố định. Hãy xác định vị trí điểm C sao cho diện tích hình thang vuông ABKI lớn nhất
Bài 5 (1 điểm):
 Cho P(x) = 3x3+ ax2+ b. Tìm giá trị của a và b để P(2000) = P(-2000) = 0
đề thi tuyển sinh LớP 10 thpt
Năm học 2001-2002
Thời gian : 150 phút


Sở gd-đt thái bình
******* 



Bài 1 (2 điểm):
 Cho biểu thức 
Tìm điều kiện của x để biểu thức K xác định.
Rút gọn biểu thức K và tìm giá trị của x để K đạt giá trị lớn nhất
Bài 2 (2 điểm):
 Cho phương trình bậc hai: 2x2 + (2m - 1)x + m - 1 = 0	(1)
Giải phương trình (1) khi cho biết m = 1; m = 2
Chứng minh rằng phương trình (1) không thể có hai nghiệm dương với mọi giá trị của m
Bài 3 (2 điểm):
Giải hệ phương trình : 
Chứng minh rằng 
Bài 4 (4 điểm):
Từ một điểm S ở ngoài đường tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD của đường tròn đó 
Gọi E là trung điểm của dây CD. Chứng minh 5 điểm S, A, E, O, B cùng thuộc một đường tròn
Nếu SA = AO thì SAOB là hình gì? tại sao? 
Chứmg minh rằng: 

đề thi tuyển sinh LớP 10 thpt
Năm học 2002-2003
Thời gian : 150 phút

Sở gd-đt thái bình
******* 



Bài 1 (2 điểm):
 Cho biểu thức 
Tìm điều kiện đối với x để K xác định
Rút gọn K 
Với những giá trị nguyên nào của x thì biểu thức K có giá trị nguyên?
Bài 2 (2 điểm): 
 Cho hàm số y = x + m (D) . Tìm các giá trị của m để đường thẳng (D) : 
Đi qua điểm A (1;2003)
Song song với đường thẳng x – y + 3 = 0
Tiếp xúc với Parabol 
Bài 3 (3 điểm):
Giải bài toán bằng cách lập phương trình: 
Một hình chữ nhật có đường chéo bằng 13m và chiều dài lớn hơn chiều rộng 7m. Tính diện tích hình chữ nhật đó.
Chứng minh bất đẳng thức: 
Bài 4 (3 điểm):
Cho DABC vuông ở A. Nửa đường tròn đường kính AB cắt BC tại D. Trên cung AD lấy một điểm E. Nối BE và kéo dài cắt AC tại F. 
Chứng minh CDEF là một tứ giác nội tiếp.
Kéo dài DE cắt AC ở K. Tia phân giác của góc CKD cắt EF và CD tại M và N. Tia phân giác của góc CBF cắt DE và CF tại P và Q. Tứ giác MPNQ là hình gì? Tại sao?
Gọi r, r1, r2 là theo thứ tự là bán kính của đường tròn nội tiếp các tam giác ABC, ADB, ADC. Chứng minh rằng 
đề thi tuyển sinh LớP 10 thpt
Năm học 2003 - 2004
Thời gian : 150 phút


Sở gd-đt thái bình
******* 



Bài 1 (2 điểm): Cho biểu thức 
Với giá trị nào của x thì biểu thức có nghĩa
Rút gọn biểu thức 
Tìm x để biểu thức có giá trị lớn nhất
Bài 2 (2,5 điểm):
Cho hàm số y = 2x2 (P) 	và 	y = 2(a - 2)x - a2 (d)
Tìm a để (d) đi qua điểm A(0;-8)
Khi a thay đổi hãy xét số giao điểm của (P) và (d) tuỳ theo giá trị của a .
Tìm trên (P) những điểm có khoảng cách đến gốc toạ độ O(0;0) bằng 
Bài 3 (2 điểm):
Một tấm tôn hình chữ nhật có chu vi là 48cm. Người ta cắt bỏ 4 hình vuông có cạnh là 2 cm ở 4 góc rồi gấp lên thành một hình hộp chữ nhật (không có nắp). Tính kích thước của tấm tôn đó, biết rằng thể tích hình hộp bằng 96cm3.
Bài 4 (3 điểm):
Cho DABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AD, BE của tam giác. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M, N. Chứng minh rằng: 
Bốn điểm A, E, D, B nằm trên một đường tròn. Tìm tâm I của đường tròn đó.
MN// DE
Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp DCDE không đổi.
Bài 5 (0,5 điểm):
 Tìm các cặp số (x;y) thoả mãn: (x2+1)( x2+ y2) = 4x2y
đề thi tuyển sinh LớP 10 thpt
Năm học 2004-2005
Thời gian : 150 phút


Sở gd-đt thái bình
******* 
Ngày thi : 24/07/2004



Câu 1: (2,0 điểm) Cho biêủ thức A = 
 1) Rút gọn A
 2) Tìm a để A nhận giá trị nguyên
Câu 2: (2,0điểm) Cho hệ phương trình : 
Tìm a biết y = 1
Tìm a để : x2 + y2 =17
Câu 3: (2,0 điểm) 
 Trên mặt phẳng toạ độ Oxy cho Parabol (P) có phương trình : y = 2x2, một đường thẳng (d) có hệ số góc bằng m và đi qua điểm I (0;2).
Viết phương trình đường thẳng (d)
CMR (d) luôn cắt (P) tại hai điểm phân biệt A và B
Gọi hoành độ giao điểm của A và B là x1, x2 . CMR : 
Câu 4: (3,5điểm) 
Cho nửa đường tròn tâm O đường kính AB. Lấy D trên cung AB (D khác A, B), lấy điểm C nằm giữa O và B. Trên nửa mặt phẳng bờ AB có chứa D kẻ các tia Ax và By vuông góc với AB. Đường thẳng qua D vuông góc với DC cắt Ax và By lần lượt tại E và F .
CMR : 
CMR : ECFvuông 
Giả sử EC cắt AD tại M, DB cắt CF tại N. CMR : MN//AB
4) Chứng minh đường tròn ngoại tiếp EMD và đường tròn ngoại tiếp DNF tiếp xúc nhau tại D.
Câu 5: (0,5điểm) Tìm x, y thoả mãn : 
Sở gd-đt thái bình
******* 
 

đề thi tuyển sinh LớP 10 thpt
Năm học 2005-2006
Thời gian : 150 phút




Bài 1: (2,0 điểm)
Thực hiện phép tính: 
Giải phương trình: x4 + 5x2 - 36 = 0
Bài 2 (2,5 điểm)
 Cho hàm số: y = (2m - 3)x + n - 4 (d) 
1. Tìm các giá trị của m và n để đường thẳng (d) : 
Đi qua A (1; 2) ; B (3; 4)
Cắt trục tung tại điểm có tung độ và cắt trục hoành tại điểm có hoành độ 
2. Cho n = 0, tìm m để đường thẳng (d) cắt đường thẳng (d’) có phương trình
 x – y + 2 = 0 tại điểm M (x;y) sao cho biểu thức P = y2 - 2x2 đạt giá trị lớn nhất.
Bài 3: (1,5 điểm)
Một mảnh vườn hình chữ nhật có diện tích là 720 m2, nếu tăng chiều dài thêm 6m và giảm chiều rộng đi 4m thì diện tích mảnh vườn không đổi. Tính các kích thước của mảnh vườn.
Bài 4: (3,5 điểm)
Cho nửa đường tròn (O) đường kính AB = 2R. Trên nửa mặt phẳng bờ AB chứa nửa đưòng tròn kẻ hai tia tiếp tuyến Ax và By. Qua điểm M thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến thứ ba cắt Ax và By ở C, D.
Chứng minh:	 a) CD = AC + BD 
 b) AC.BD = R2
Xác định vị trí điểm M để tứ giác ABDC có diện tích nhỏ nhất.
Cho R = 2cm, diện tích tứ giác ABDC bằng 32cm2. Tính diện tích DABM
Bài 5: (0,5 điểm)
 Cho các số dương x, y, z thoả mãn x + y + z = 1. Chứng minh rằng: 
 
Sở gd-đt tháI bình
******* 
 Ngày thi 18/07/2006 


đề thi tuyển sinh thpt
Năm học 2006-2007
Thời gian : 120 phút



Bài 1: (2,0 điểm) Cho biểu thức: 
 	Với x ³ 0 và x ạ 9
Rút gọn biểu thức Q 
Tìm giá trị của x để 
Bài 2: (2,5 điểm) Cho hệ phương trình: (m là tham số)
Giải hệ với m = -2
Tìm các giá trị của m để hệ có nghiệm duy nhất (x ; y) thoả mãn y = x2
Bài 3: (1,5 điểm) Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d): y = x + 2 và Parabol (P): y = x2
Xác định toạ độ hai giao điểm A và B của (d) với (P)
Cho điểm M thuộc (P) có hoành độ là m (với –1 Ê m Ê 2). CMR: SMAB Ê 
Bài 4: (3,5 điểm) Cho đường tròn tâm O, đường kính AB = 2R. Gọi I là trung điểm của AO. Qua I kẻ dây CD vuông góc với AB. 
 1) Chứng minh: a) Tứ giác ACOD là hình thoi. 
 b) 
 2) Chứng minh rằng O là trực tâm của DBCD
 3) Xác định vị trí điểm M trên cung nhỏ BC để tổng (MB+MC+MD) đạt giá trị lớn nhất
Bài 5: (0,5 điểm) 
Giải bất phương trình: 



Sở gd-đt tháI bình
******* 
 Ngày thi 18/07/2006 

đề thi tuyển sinh thpt
Năm học 2007-2008
Thời gian : 120 phút





Bài 1 (1,5 điểm) Giải hệ phương trình sau
 
Bài 2 (2,0 điểm) Cho biểu thức 
a) Rút gọn biểu thức A
b) Tính giá trị của A khi x = 841
Bài 3 (3,0 điểm) 
 Trong mặt phẳng toạ độ, cho đường thẳng (d) : y = 2(m – 1)x – (m2 – 2m) và Parabol (P) : y = x2.
a. Tìm m để đường thẳng (d) đi qua gốc toạ độ O.
b. Tìm toạ độ giao điểm của (d) và (P) khi m = 3
c. Tìm m sao cho (d) cắt (P) tại hai điểm có tung độ y1, y2 sao cho 
Bài 4 (3 điểm) Cho tam giác ABC có ba góc nhọn (AC > BC) nội tiếp đường tròn tâm O. Vẽ các tiếp tuyến với đường tròn tâm O tại A và B, cácv tiếp tuyến này cắt nhau tại M. Gọi H là hình chiếu vuông góc của O trên MC.
	a. Chứng minh MAOH là tứ giác nội tiếp.
	b. Chứng minh tia HM là tia phân giác của 
	c. Qua C kẻ đường thẳng song song với AB cắt các đường thẳng MA, MB lần lượt tại E và F. Nối HE cắt AC tại P, nối HF cắt BC tại Q. Chứng minh PQ//EF.
Bài 5 (0,5 điểm) 
Cho . Chứng minh rằng 
Sở Giáo dục - Đào tạo
Đề chính thức
Thái Bình
Kỳ thi tuyển sinh lớp 10 Trung học phổ thông
Năm học 2008 - 2009

Môn: Toán
Thời gian: 120 phút (không kể thời gian giao đề)

Bài 1 (2,0 điểm) 
	Cho biểu thức với x ³ 0 và x ạ 1
	1. Rút gọn P;
	2. Tìm giá trị của x để .
Bài 2 (2,0 điểm) 
	Cho hàm số bậc nhất y = (m - 2)x + m + 1 (m là tham số)
1. Với giá trị nào của m thì hàm số y là hàm số đồng biến;
2. Tìm giá trị của m để đồ thị hàm số đi qua điểm M (2; 6);
3. Đồ thị hàm số cắt trục hoành tại A, cắt trục tung tại B (A và B không trùng với gốc tọa độ O). Gọi H là chân đường cao hạ từ O của tam giác OAB. Xác định giá trị của m, biết OH = .
Bài 3 (2,0 điểm) 
	Cho phương trình (a là tham số)
	1. Giải phương trình với a = 6;
	2. Tìm a để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: 

Bài 4 (3,5 điểm) 
	Cho tam giác ABC có ba góc nhọn. Đường tròn đường kính BC cắt cạnh AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE với CF, D là giao điểm của AH với BC.
	1. Chứng minh:
a) Các tứ giác AEHF, AEDB nội tiếp đường tròn;
b) AF . AB = AE . AC
2. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Chứng minh rằng: Nếu AD + BE + CF = 9r thì tam giác ABC đều.
Bài 5 (0,5 điểm) 
	Giải hệ phương trình: 
------- Hết -------

Họ và tên thí sinh:.................................................................. Số báo danh:	
Giám thị 1:.	 Giám thị 2:.	
đề thi tuyển sinh thpt
Năm học 2006-2007
Thời gian : 120 phút

Sở gd-đt hà nội
******* 
 Ngày thi / 7/2006: 





Bài 1: (2,5 điểm) Cho biểu thức
 
Rút gọn biểu thức P 
Tìm a để 
Bài 2: (2,5 điểm)
Một ca nô xuôi dòng trên một khúc sông từ bến A đến bến B dài 80 km, sau đó lại ngược dòng đến địa điểm C cách bến B 72 km. Thời gian ca nô xuôi dòng ít hơn thời gian ngược dòng là 15 phút. Tính vận tốc riêng của ca nô biết vận tốc của dòng nước là 4 km/h.
Bài 3: (1 điểm)
Tìm toạ độ giao điểm A và B của đồ thị hai hàm số y = 2x+3 và y = x2.
 Gọi D và C lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tính SABCD
Bài 4: (3 điểm)
Cho (O) đường kính AB = 2R, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MM .
CMR: BCHK là tứ giác nội tiếp 
Tính AH.AK theo R
Xác định vị trí của điểm K để (KM+KN+KB) đạt giá trị lớn nhất và tính giá trị lớn nhất đó 
Bài 5: (1 điểm)
 Cho hai số dương x, y thoả mãn điều kiện: x+y = 2. Chứng minh: x2y2(x2+ y2) Ê 2

Đề số: 01
Bài 1(2 điểm):
 Cho 
Rút gọn P 
Tìm x để P < 1
Tìm các giá trị nguyên của x để P có giá trị nguyên
Bài 2(2 điểm):
 Cho hệ phương trình 
Giải hệ phương trình với m = 2
Tìm m để hệ có nghiệm duy nhất (x;y) mà S = x2 + y2 đạt giá trị nhỏ nhất
Bài 3(2 điểm):
 Cho y = ax2 (P) và y = -x + m (D)
Tìm a biết (P) luôn đi qua A(2;-1)
Tìm m biết (D) tiếp xúc với (P). Tìm toạ độ tiếp điểm 
Gọi B là giao của (D) với trục tung; C là điểm đối xứng của A qua trục tung. 
 CMR: C nằm trên (P) và DABC vuông cân.
Bài 4(3,5 điểm):
Cho nửa đường tròn tâm O đường kính AB bằng 2R. M là một điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ hai tiếp tuyến Ax và By với nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba cắt hai tiếp tuyến Ax và By tại C và D.
Chứng minh rằng: DCOD vuông
Chứng minh rằng: AC.BD = R2 
Gọi E là giao của OC và AM; F là giao của OD và BM. Chứng minh rằng: EF = R
Tìm vị trí M để SABCD đạt giá trị bé nhất
Bài 5(0,5 điểm):
 Cho x > y và x.y = 1. Tìm giá trị nhỏ nhất của 
Đề số: 02
Bài 1 (2 điểm):
 Cho 
Rút gọn N 
Tính N khi 
CMR: Nếu thì N có giá trị không đổi 
Bài 2 (2 điểm):
 Cho (d1): x + y = k ; (d2): kx + y = 1 ; y = -2x2 (P)
Tìm giao điểm của (d1) và (d2) với k = 2003
Tìm k để (d1) cắt (P) tại hai điểm phân biệt và (d2) cũng cắt (P) tại hai điểm phân biệt
Tìm k để (d1) và (d2) cắt nhau tại một điểm nằm trên (P)
Bài 3 (2 điểm):
Một tam giác có cạnh lớn nhất là , còn hai cạnh kia là nghiệm của phương trình
 7x - x2 -m = 0. Tìm m để tam giác là tam giác vuông và khi đó hãy tính diện tích tam giác.
Bài 4 (3,5 điểm):
Cho M là một điểm tuỳ ý trên nửa đường tròn tâm O, đường kính AB = 2R (M không trùng với A và B). Vẽ các tiếp tuyến Ax, By, Mz của nửa đường tròn đó. Đường Mz cắt Ax và By tại N và P. Đường thẳng AM cắt By tại C và đường thẳng BM cắt cắt Ax tại D. CMR:
Tứ giác AOMN nội tiếp và NP = AN + BP
N, P là trung điểm của AD và BC
AD.BC = 4 R2
Xác định vị trí điểm M để SABCD có giá trị nhỏ nhất
Bài 5 (0,5 điểm):
 Tìm (x;y) thoả mãn phương trình: 
Đề số: 03
Bài 1 (2,0 điểm): Cho 
Rút gọn K 
CMR: Nếu thì là số nguyên chia hết cho 3
Tìm số nguyên x để K là số nguyên lớn hơn 5
Bài 2 (2,0 điểm):
 Cho x2 - 2(m + 1)x + m - 4 = 0 (1)
Tìm m để (1) có đúng một nghiệm bằng 2? Tìm nghiệm còn lại
CMR: (1) luôn có hai nghiệm phân biệt
CMR: A = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m 
Bài 3 (2,0 điểm)
 Cho y = ax2 (P)
Tìm a biết (P) đi qua điểm A(1; )
Trên (P) lấy M, N có hoành độ lần lượt là 2 và 1. Viết phương trình MN
Xác định hàm số y = ax+b (D) biết (D) song song với MN và tiếp xúc với (P)
Bài 4 (3,5 điểm)
Cho (O;R) có hai đường kính AB, CD vuông góc với nhau. E là một điểm bất kỳ trên cung nhỏ BD (E khác B và D). EC cắt AB ở M, EA cắt CD ở N.
Hai DAMC và DANC có quan hệ với nhau như thế nào? Tại sao? 
CMR: AM.CN = 2R2
Giả sử AM = 3BM. Tính tỉ số 
Bài 5 (0,5 điểm)
 Cho a, b, c là ba cạnh của DABC và a3 + b3 + c3- 3abc = 0. Hỏi DABC có đặc điểm gì?

Đề số: 04
Bài 1 (2,0 điểm):
 Cho 
Rút gọn K 
Tính giá trị của K khi 
Tìm giá trị của x để K >1
Bài 2 (2,0 điểm):
 Cho phương trình (m + 1)x2 - 2(m - 1)x + m - 3 = 0 (1)
Tìm m để (1) có hai nghiệm phân biệt
Tìm m để phương trình có ít nhất một nghiệm âm
Tìm m để (1) có hai nghiệm cùng dấu thoả mãn nghiệm này gấp đôi nghiệm kia
Bài 3 (2,0 điểm)
Một mảnh vườn hình chữ nhật có chu vi 280 m. Người ta làm một lối đi xung quanh (thuộc đất trong vườn) rộng 2 m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn để trồng trọt là 4256 m2.
Bài 4 (3,5 điểm)
Cho (O;R) và dây cung CD cố định có trung điểm là H. Trên tia đối của tia DC lấy điểm S và qua S kẻ các tiếp tuyến SA, SB với (O) .Đường thẳng AB cắt các đường SO; OH lần lượt tại E, F. Chứng minh rằng:
SEHF là tứ giác nội tiếp
OE.OF = R2
OH.OF = OE.OS
AB luôn đi qua một điểm cố định khi S chạy trên tia đối của tia DC
Bài 5 (0,5 điểm)
 Cho hai số dương x, y thoả mãn điều kiện: x + y = 1. 
Chứng minh: 
Đề số: 05
Bài 1 (2,0 điểm): Cho 
Rút gọn P 
Tìm x để P < -1/2
Tìm giá trị nhỏ nhất của P
Bài 2 (2,0 điểm):
 Cho phương trình : mx2 + 2(m - 2)x + m - 3 = 0 (1)
Tìm m để (1) có hai nghiệm trái dấu
Xác định m để (1) có hai nghiệm trái dấu sao cho nghiệm âm có giá trị tuyệt đối lớn hơn
Gọi x1 , x2 là nghiệm của phương trình. Viết hệ thức liên hệ giữa các nghiệm không phụ thuộc m 
Tìm giá trị nhỏ nhất của biểu thức 
Bài 3 (2,0 điểm): Cho y = x2 (P) và mx + y = 2 (d) 
Chứng minh rằng khi m thay đổi thì (d) luôn đi qua một điểm cố định C 
Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt A và B
Xác định m để AB ngắn nhất. Khi đó hãy tính diện tích DAOB
Tìm quỹ tích trung điểm I của AB khi m thay đổi
Bài 4 (3,0 điểm): Cho (O;R) có hai đường kính AB và CD vuông góc với nhau. M là điểm bất kỳ thuộc đường kính AB (M khác O,A,B). CM cắt (O) tại N (N khác C). Dựng đường thẳng d vuông góc với AM tại M. Tiếp tuyến với (O) tại N cắt d ở E 
CMR: OMEN nội tiếp
OCME là hình gì? tại sao?
CMR: CM.CN không đổi 
CMR: E chạy trên đường thẳng cố định khi m chuyển động trên đường kính AB (M khác A,B)
Bài 5 (1,0 điểm): Giải hệ 

File đính kèm:

  • docrong.doc