Đề thi tuyển sinh vào lớp 10 môn Toán (Hà Nội)

doc2 trang | Chia sẻ: huu1989 | Lượt xem: 842 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 môn Toán (Hà Nội), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 SỞ GD&ĐT THÀNH PHỐ HÀ NỘI
ĐỀ THI TUYỂN SINH VÀO LỚP 10
Bài I (2,5 điểm)
Cho Với .
1) Rút gọn biểu thức A.
2) Tính giá trị của A khi x = 9.
3) Tìm x để .
Bài II (2,5 điểm)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày?
Bài III (1,0 điểm)
Cho Parabol (P): và đường thẳng (d): .
1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1.
2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung.
Bài IV (3,5 điểm)
Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N.
1) Chứng minh AMEI là tứ giác nội tiếp.
2) Chứng minh và .
3) Chứng minh AM.BN = AI.BI .
4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng.
Bài V (0,5 điểm)
Với x > 0, tìm giá trị nhỏ nhất của biểu thức: .

File đính kèm:

  • docToan TS 10 Ha Noi NH 2011 2012.doc