Đề thi tuyển sinh vào lớp 10 THPT Bắc Giang năm học 2013 – 2014 môn Toán
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 THPT Bắc Giang năm học 2013 – 2014 môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC : 2013-2014 MÔN : TOÁN NGÀY 30/06/2013 Thời gian làm bài : 120 phút Câu I( 3 điểm ) 1. Tính giá trị của biểu thức A= 2.Tìm m để hai đường thẳng (d) : y =(2m-1)x+1,( m ) và (d'): y=3x-2 song song với nhau. 3. Giải hệ phương trình Câu II( 2 điểm ) 1. Rút gọn biểu thức B = ( với x>0; x1) 2. Cho phương trình (1) a. Giải phương trình (1) với m =3. b. Tìm m để phương trình (1) có hai nghiệm phân biệt thoả mãn : Câu III (1,5 điểm ) Tìm hai số tự nhiên hơn kém nhau 12 đơn vị biết tích của chúng bằng 20 lần số lớn cộng với 6 lần số bé. Câu IV ( 3 điểm ) Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA; qua D vẽ dây cung EF bất kỳ của đường tròn (O;R), ( EF không là đường kính). Tia BE cắt d tại M, tia BF cắt d tại N. 1. Chứng minh tứ giác MCAE nội tiếp. 2. Chứng minh BE.BM = BF.BN 3. Khi EF vuông góc với AB, tính độ dài đoạn thẳng MN theo R. 4. Chứng minh rằng tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi. Câu V(0,5 điểm) Cho hai số x, y thỏa mãn và . Tìm giá trị lớn nhất của biểu thức M=
File đính kèm:
- TS Bac Giang 2014.doc