Đề thi tuyển sinh vào lớp 10 THPT TP.HCM năm học 2013 – 2014 môn Toán
Bạn đang xem nội dung tài liệu Đề thi tuyển sinh vào lớp 10 THPT TP.HCM năm học 2013 – 2014 môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2013 – 2014 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm) Giải các phương trình và hệ phương trình sau: a) b) c) d) Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính. Bài 3: (1,5 điểm) Thu gọn các biểu thức sau: với ; Bài 4: (1,5 điểm) Cho phương trình (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm b) Định m để phương trình (*) có hai nghiệm , thỏa điều kiện: Bài 5: (3,5 điểm) Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. Chứng minh rằng . Từ đó suy ra MBIC là tứ giác nội tiếp. Chứng minh rằng: FI.FM = FD.FE. Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất.
File đính kèm:
- TS TP HCM 2014.doc