Kì thi tuyển sinh vào 10 - Thpt năm học: 2013 – 2014 môn: toán (không chuyên) thời gian: 120 phút (không kể thời gian giao đề)
Bạn đang xem nội dung tài liệu Kì thi tuyển sinh vào 10 - Thpt năm học: 2013 – 2014 môn: toán (không chuyên) thời gian: 120 phút (không kể thời gian giao đề), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO 10 - THPT TỈNH LÀO CAI NĂM HỌC: 2013 – 2014 MÔN: TOÁN (Không chuyên) Thời gian: 120 phút (không kể thời gian giao đề). Câu I: (2,5 điểm) 1. Thực hiện phép tính: a) 3. 12 b)3 20 45 2 80. 2. Cho biểu thức: P = 1 1 a 1 a 2 : Voia 0;a 1;a 4 a 1 a a 2 a 1 a) Rút gọn P b) So sánh giá trị của P với số 1 3 . Câu II: (1,0 điểm) Cho hai hàm số bậc nhất y = -5x + (m+1) và y = 4x + (7 – m) (với m là tham số). Với giá trị nào của m thì đồ thị hai hàm số trên cắt nhau tại một điểm trên trục tung. Tìm tọa độ giao điểm đó. Câu III: (2,0 điểm) Cho hệ phương trình: m 1 x y 2 mx y m 1 (m là tham số) 1) Giải hệ phương trình khi m = 2. 2. Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn: 2x + y 3. Câu IV: (1,5 điểm) Cho phương trình bậc hai x2 + 4x - 2m + 1 = 0 (1) (với m là tham số) a) Giải phương trình (1) với m = -1. b) Tìm m để phương trình (1) có hai nghiệm x1 ; x2 thỏa mãn điều kiện x1-x2=2. Câu V : (3,0 điểm) Cho đường tròn tâm O bán kính R và một điểm A sao cho OA = 3R. Qua A kẻ 2 tiếp tuyến AP và AQ với đường tròn (O ; R) (P, Q là 2 tiếp điểm). Lấy M thuộc đường tròn (O ; R) sao cho PM song song với AQ. Gọi N là giao điểm thứ hai của đường thẳng AM với đường tròn (O ; R). Tia PN cắt đường thẳng AQ tại K. 1) Chứng minh tứ giác APOQ là tứ giác nội tiếp và KA2 = KN.KP. 2) Kẻ đường kính QS của đường tròn (O ; R). Chứng minh NS là tia phân giác của góc PNM . 3) Gọi G là giao điểm của 2 đường thẳng AO và PK. Tính độ dài đoạn thẳng AG theo bán kính R. ------------ Hết ----------- ĐỀ CHÍNH THỨC www.VNMATH.com Giải: Câu I: (2,5 điểm) 1. Thực hiện phép tính: a) 3. 12 36 6 b)3 20 45 2 80 6 5 3 5 8 5 5 2. Cho biểu thức: P = 1 1 a 1 a 2 : Voia 0;a 1;a 4 a 1 a a 2 a 1 a) Rút gọn a 1 a 1 a 2 a 2a a 1 P : a a 1 a 2 a 1 a 2 a 1 a 2 a 11 a 2 . a 1 a 4 3 aa a 1 b) So sánh giá trị của P với số 1 3 . Xét hiệu: a 2 1 a 2 a 2 33 a 3 a 3 a Do a > 0 nên 3 a 0 suy ra hiệu nhỏ hơn 0 tức là P < 1 3 Câu II: (1,0 điểm) Đồ thị hai hàm số bậc nhất y = -5x + (m+1) và y = 4x + (7 – m) cắt nhau tại một điểm trên trục tung khi tung độ góc bằng nhau tức là m+1 = 7 – m suy ra m = 3. Tọa độ giao điểm đó là (0; m+1) hay (0; 7-m) tức là (0; 4) Câu III: (2,0 điểm) Cho hệ phương trình: m 1 x y 2 mx y m 1 (m là tham số) 1) Giải hệ phương trình khi m = 2. Ta có x y 2 x 1 2x y 3 y 1 2. y = 2 – (m-1)x thế vào phương trình còn lại ta có: mx + 2 – (m-1)x = m + 1 x = m – 1 suy ra y = 2 – (m-1)2 với mọi m Vậy hệ phương trình luôn có nghiệm duy nhất (x; y) = (m-1; 2-(m-1)2) 2x + y = 2(m-1) + 2 – (m-1)2 = -m2 + 4m -1 = 3 – (m-2)2 3 với mọi m Vậy với mọi giá trị của m thì hệ phương trình luôn có nghiệm thỏa mãn: 2x + y 3 Câu IV: (1,5 điểm) Cho phương trình bậc hai x2 + 4x - 2m + 1 = 0 (1) (với m là tham số) a) Giải phương trình (1) với m = -1. Ta có x2 + 4x +3 = 0 có a-b+c=1-4+3=0 nên x1 = -1 ; x2 = -3 b) ' = 3+2m để phương trình (1) có hai nghiệm x1 ; x2 thì ' 0 tức là m 3 2 Theo Vi ét ta có x1+ x2 = -4 (2); x1.. x2 = -2m+1 (3) Két hợp (2) vói đầu bài x1-x2=2 ta có hệ phương trình : 1 2 1 1 2 2 x x 4 x 1 x x 2 x 3 thế vào (3) ta được m = -1 (thỏa mãn ĐK m 3 2 ) Vậy với m = -1 thì hệ phương trình (1) có hai nghiệm x1 ; x2 thỏa mãn điều kiện x1-x2=2. www.VNMATH.com Câu V : (3,0 điểm) a) tứ giác APOQ có tổng hai góc đối bằng 1800. PM//AQ suy ra PMN KAN (Sole trong) PMN APK (cùng chan PN) Suy ra KAN APK Tam giác KAN và tam giác KPA có góc K chung KAN KPA nên hai tam giác đồng dạng (g-g) 2KA KN KA KN.KP KP KA b) PM//AQ mà SQ AQ (t/c tiếp tuyến) nên SQ PM suy ra PS SM nên PNS SNM hay NS là tia phân giác của góc PNM . c) Gọi H là giao điểm của PQ với AO G là trọng tâm của tam giác APQ nên AG = 2/3 AH mà OP2 = OA.OH nên OH = OP2/OA = R2/ 3R = R/3 nên AH = 3R – R/3 = 8R/3 do đó AG = 2/3 . 8R/3 = 16R/9 ------------ Hết ----------- HG S K N M Q P A O www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO 10 - THPT TỈNH LÀO CAI NĂM HỌC: 2013 – 2014 MÔN: TOÁN (Chuyên) Thời gian: 150 phút (không kể thời gian giao đề) Câu I: (2,0 điểm) 1. Rút gọn biểu thức: 3 3 x y 2x x y y x y 3 xy y P x yx x y y . (với x > 0; y > 0; x y). 2. Tính x biết x3 = 3 31 3 4 3 2 Câu II: (2,0 điểm). Cho f(x) = x2 – (2m+1)x + m2 + 1 (x là biến, m là tham số) 1. Giải phương trình f(x) = 0 khi m = 1. 2. Tìm tất cả các giá trị m Z để phương trình f(x) = 0 có hai nghiệm phân biệt x1; x2 sao cho biểu thức P = 1 2 1 2 x x x x có giá trị là số nguyên. Câu III: (2,0 điểm). 1. Giải hệ phương trình sau : 1 4 2 3x y 2x y 12y 4x 7 2x y 3x y 2. Tìm nghiệm nguyên của phương trình : 5x2 + y2 = 17 + 2xy Câu IV: (3,0 điểm). Cho đường tròn (O ; R) có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy một điểm M (M không trùng với O và không trùng với hai đầu mút A và B). Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai là N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn (O) ở điểm P. Chứng minh rằng : 1. Tứ giác OMNP nội tiếp đường tròn. 2. Tứ giác CMPO là hình bình hành. 3. Tích CM.CN không đổi. 4. Khi M di chuyển trên đoạn thẳng AB thì điểm P chạy trên một đoạn thẳng cố định. Câu V: (1,0 điểm). Tìm hai số nguyên a và b để M = a4 + 4b4 là số nguyên tố. ---------------------- Hết-------------------- ĐỀ CHÍNH THỨC
File đính kèm:
- Đề thi 2013 - 2014 Lớp 10 - Lào Cai.pdf