Kiểm tra đề số 1 môn : máy tính bỏ túi casio lớp 9 Trường THCS Nguyễn Bỉnh Khiêm
Bạn đang xem nội dung tài liệu Kiểm tra đề số 1 môn : máy tính bỏ túi casio lớp 9 Trường THCS Nguyễn Bỉnh Khiêm, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Trường THCS Nguyễn Bỉnh Khiêm Lớp : ……………………………………………… Họ Và Tên : ……………………………………………… Kiểm Tra Đề Số 1 Điểm : Môn : Máy Tính Bỏ Túi CASIO LỚP 9 ĐỀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO Thời Gian : 150 Phút 1/ Biết dãy số {an } xác định như sau : a1 = 1 ; a2 = 2 ;an+2 = 3 an+1 + 2 an Với mọi n nguyên dương . Tính a15 2/ Cho S1 = 81 ; S2 = S1 + 225 S3 = S1 + S2 + 625 ; S4 = S1 + S2 + S3 + 1521 S5 = S1 + S2 + S3 + S’4 + 3249 ; . . . . Tính : S8 S9 S10 3/ Cho P( x ) = x3 + ax2 + bx + c . Q( x ) = x4 - 10x3 + 40x2 – 125x – P( -9) . a/ Tính a , b , c , và P biết : P ; P ; P b/ Với a,b,c tìm được ở trên , tìm thương và số dư của phép chia đa thức Q(x) cho x-11 4/ a/ Tìm bình phương số : A=():(1+) b/ Tính giá trị của biểu thức : B= 5/ Cho x1000 + y1000 = 6,912 x2000 + y2000 = 33,76244 Tính x3000 + y3000 6/ Cho tam giác ABC có các độ dài của các cạnh AB = 4,71 cm , BC = 6,26 cm , AC = 7,62 cm a/ Tính độ dài của đường cao BH, trung tuyến BM và đoạn phân giác trong BD của góc B ( M và DAC ) b/ Tính gần đúng diện tích tam giác BHD 7/ Tìm một nghiệm gần đúng của phương trình a/ x3 + 5x – 2 = 0 b/ x + -2 = 0 8/ Hình thang cân ABCD có đáy lớn CD = 10 cm đáy nhỏ bằng đường cao , đường chéo vuông góc với cạnh bên . Tính đường cao của hình thang . 9/ Tam giác ABC có BC = 40 cm , đường phân giác AD = 45 cm , đường cao AH = 36 cm . Tính độ dài BD, DC . 10/ Tam giác ABC vuông tại A có AB = 9 cm , AC = 12 cm , gọi I là tâm đường tròn nội tiếp , G là trọng tâm của tam giác . Tính độ dài IG ĐÁP ÁN GIẢI TOÁN TRÊN MÁY TÍNH CASIO Thời Gian : 150 Phút 1/ Biết dãy số {an } xác định như sau : a1 = 1 ; a2 = 2 ;an+2 = 3 an+1 + 2 an Với mọi n nguyên dương . a15 = 32826932 Tính a15 2/ Cho S1 = 81 ; S2 = S1 + 225 S3 = S1 + S2 + 625 ; S4 = S1 + S2 + S3 + 1521 S5 = S1 + S2 + S3 + S’4 + 3249 ; . . . . S8 = 89280 S9= 188896 S10 = 392080 Tính : S8 S9 S10 3/ Cho P( x ) = x3 + ax2 + bx + c . Q( x ) = x4 - 10x3 + 40x2 – 125x – P( -9) . a/ Tính a , b , c , và P biết : P ; P ; P b/ Với a,b,c tìm được ở trên , tìm thương và số dư của phép chia đa thức Q(x) cho x-11 P a = 7; b = -4 ; c = 5 Thương : x3 + x2 + 51x + 436 số dư : 4917 A2 = 3 4/ a/ Tìm bình phương số : A=():(1+) b/ Tính giá trị của biểu thức : B = 2003 B= 5/ Cho x1000 + y1000 = 6,912 x2000 + y2000 = 33,76244 184,9360067 Tính x3000 + y3000 6/ Cho tam giác ABC có các độ dài của các cạnh AB = 4,71 cm , BC = 6,26 cm , AC = 7,62 cm a/ Tính độ dài của đường cao BH, trung tuyến BM và đoạn phân giác trong BD của góc B ( M và DAC ) BH3,863279635 ; AD 3,271668186 ; BD 3,906187546 b/ Tính gần đúng diện tích tam giác BHD SBHD1,115296783 cm2 7/ Tìm một nghiệm gần đúng của phương trình a/ x0,388291441 b/ x 3,179693891 a/ x3 + 5x – 2 = 0 b/ x + -2 = 0 8/ Hình thang cân ABCD có đáy lớn CD = 10 cm đáy nhỏ bằng đường cao , đường chéo vuông góc với cạnh bên . Tính đường cao của hình thang . 4,472135955 DB = 15 cm ; DC = 25 cm 9/ Tam giác ABC có BC = 40 cm , đường phân giác AD = 45 cm , đường cao AH = 36 cm . Tính độ dài BD, DC . 10/ Tam giác ABC vuông tại A có AB = 9 cm , AC = 12 cm , gọi I là tâm đường tròn nội tiếp , G là trọng tâm của tam giác . Tính độ dài IG IG = 1 cm Trường THCS Nguyễn Bỉnh Khiêm Lớp : ……………………………………………… Họ Và Tên : ………………………………………… Kiểm Tra Đề Số Điểm : Môn : Máy Tính Bỏ Túi CASIO LỚP 8 ĐỀ THI GIẢI TOÁN TRÊN MÁY TÍNH CASIO Thời gian : 150 phút 1/ Cho đa thức P( x ) = x3 + ax2 + bx + c và cho biết P( 1 ) = 4 ; P( -2 ) = 7 , P( 3 ) = 12 . Tính P( 30 ) 2/ Cho đa thức F( x ) = 2x4 - 6 x3 + 5x2 + 2x + m . Với giá trị nào của m thì đa thức F( x ) chia hết cho đa thức x + 4 3/ Giải phương trình a/ x4 - x3 + x - 1 = 0 b/ ( x + 2 )4 + x4 = 82 4/ Cho dãy số xác định bởi công thức : xn+1 = ; n là số tự nhiên và n 1 Biết x1 = 0,28 . Tính x100 5/ a/ Cho U1 = 3 ; U2 = 2 ; Un = 2Un-1 + 3Un-2 ( n 3 ) . Tính U21 b/ Tính giá trị của biểu thức : B = + + + . . . + + . 6/ Một hình thang cân có 2 đường chéo vuông góc nhau . Đáy nhỏ dài 14,358cm, cạnh bên dài 23,457cm . Tính diện tích hình thang . 7/ Cho hình thang ABCD có đáy nhỏ AB = 15cm, cạnh bên BC = 8cm ; ABC = 1010 , ADC = 350 . Tính diện tích hình thang . 8/ Cho hình thang cân ABCD có C = 300 , đáy nhỏ AB = 2,5cm và cạnh bên BC = 3,2cm . Tính : a/ Diện tích hình thang ABCD b/ Độ dài đường chéo AC 9/ Cho tam giác ABC có A = B + 2 C và độ dài 3 cạnh là 3 số tự nhiên liên tiếp . a/ Tính độ dài các cạnh của tam giác b/ Tính số đo góc A , góc B , góc C 10/ Cho tam giác ABC có AB = 4cm , BC = 6cm , Ac = 8cm . Các đường phân giác trong AD và BE cắt nhau tại I . a/ Tính độ dài các đoạn thẳng BD và CD . b/ Gọi G là trọng tâm của tam giác ABC . Tính độ dài đoạn thẳng IG . ĐÁP ÁN GIẢI TOÁN TRÊN MÁY TÍNH CASIO Thời gian : 150 phút 1/ Cho đa thức P( x ) = x3 + ax2 + bx + c và cho biết P( 1 ) = 4 ; P( -2 ) = 7 , P( 3 ) = 12 . P( 30 ) = 25959 Tính P( 30 ) m = -968 2/ Cho đa thức F( x ) = 2x4 - 6 x3 + 5x2 + 2x + m . Với giá trị nào của m thì đa thức F( x ) chia hết cho đa thức x + 4 a/ x1 = 1 ; x2 = -1 b/ x1 = 1 ; x2 = -3 3/ Giải phương trình a/ x4 - x3 + x - 1 = 0 b/ ( x + 2 )4 + x4 = 82 4/ Cho dãy số xác định bởi công thức : 5,036540703 xn+1 = ; n là số tự nhiên và n 1 Biết x1 = 0,28 . Tính x100 5/ a/ Cho U1 = 3 ; U2 = 2 ; Un = 2Un-1 + 3Un-2 U21 =4358480503 ( n 3 ) . Tính U21 B = 1,9524 b/ Tính giá trị của biểu thức : B = + + + . . . + + . 6/ Một hình thang cân có 2 đường chéo vuông góc nhau . Đáy nhỏ dài 14,358cm, cạnh bên dài 23,457cm . Tính diện tích hình thang . S = 489,8035 ( cm2 ) 7/ Cho hình thang ABCD có đáy nhỏ AB = 15cm, cạnh bên BC = 8cm ; ABC = 1010 , ADC = 350 . Tính diện tích hình thang . S 167,825828 8/ Cho hình thang cân ABCD có C = 300 , đáy nhỏ AB = 2,5cm và cạnh bên SABCD 8,434050067 ( cm2 ) AC 5,50875725 BC = 3,2cm . Tính : a/ Diện tích hình thang ABCD b/ Độ dài đường chéo AC 9/ Cho tam giác ABC có A = B + 2 C và độ dài 3 cạnh là 3 số tự nhiên liên tiếp . a/ Tính độ dài các cạnh của tam giác b/ Tính số đo góc A , góc B , góc C a/ AB = 2 AC = 3 BC = 4 b/ A = 1040 29/ B = 460 34/ C = 280 57/ 10/ Cho tam giác ABC có AB = 4cm , BC = 6cm , Ac = 8cm . Các đường phân giác trong AD và BE cắt nhau tại I . a/ Tính độ dài các đoạn thẳng BD và CD . b/ Gọi G là trọng tâm của tam giác ABC . Tính độ dài đoạn thẳng IG . a/ DB = 2cm DC = 4cm b/ IG = cm
File đính kèm:
- DE THI GIAI TOAN TREN MAY TINH.doc