Kỳ thi chọn học sinh giỏi cấp trường khối 10 - Môn toán năm học: 2008 - 2009 (thời gian làm bài 180 phút, không kể thời gian giao đề)

doc2 trang | Chia sẻ: bobo00 | Lượt xem: 771 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Kỳ thi chọn học sinh giỏi cấp trường khối 10 - Môn toán năm học: 2008 - 2009 (thời gian làm bài 180 phút, không kể thời gian giao đề), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 SỞ GD & ĐT THANH HOÁ KỲ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG
TRƯỜNG THPT NÔNG CỐNG IV KHỐI 10 - MÔN TOÁN – BKHTN - NĂM HỌC: 2008 - 2009 
 (Thời gian làm bài 180 phút, không kể thời gian giao đề)
Họ tên thí sinh:SBD:.
CÂU 1: ( 6 điểm)
Tìm a để giá trị nhỏ nhất của hàm số: y = 4x2 – 4ax + a2 – 2a trên [- 2; 2] bằng 2.
Giải hệ phương trình: 
Tìm m để phương trình: có 4 nghiệm phân biệt.
CÂU 2: ( 4 điểm)
Giải bất phương trình: 
Giã sử phương trình: có nghiệm .
 Chứng minh rằng: 
CÂU 3: ( 6 điểm)
Trong mặt phẳng toạ độ vuông góc 0xy, cho ba điểm I(1; 1), M(- 2; 2) và N(2; - 2). Tìm toạ độ các đỉnh của hình vuông ABCD sao cho I là tâm, M thuộc AB và N thuộc CD.
Cho .Chứng minh rằng: 
CÂU 4: (4 điểm)
Cho ba số thực dương a, b, c thỏa mãn abc = 1. 
Chứng minh rằng: 
Giải phương trình: 
.Hết
Thí sinh không sử dụng tài liệu, trao đổi bài, cán bộ coi thi không giả thích gì thêm
 SỞ GD & ĐT THANH HOÁ KỲ THI CHỌN HỌC SINH GIỎI CẤP TRƯỜNG
TRƯỜNG THPT NÔNG CỐNG IV KHỐI 10 - MÔN TOÁN – BKHTN - NĂM HỌC: 2008 - 2009 
 (Thời gian làm bài 180 phút, không kể thời gian giao đề)
Họ tên thí sinh:SBD:.
CÂU 1: ( 6 điểm)
Giải bất phương trình sau : 
Giải hệ phương trình sau :

File đính kèm:

  • docDE THI HSG KHOI 10 NAM 20082009.doc