Luyện thi đại học môn toán năm 2009 (thời gian: 180 phút)

doc1 trang | Chia sẻ: bobo00 | Lượt xem: 867 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Luyện thi đại học môn toán năm 2009 (thời gian: 180 phút), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Luyện thi ĐH năm 2009 (Thời gian: 180 phút)
Đề số 1
	Phần chung có tất cả các thí sinh
Câu 1: ( 2 điểm ) Cho hàm số: 
1/ Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số đã cho.
2/ Tìm tất cả các giá trị của m để tiệm cận xiên của (H) là tiếp tuyến của đường tròn (S) sau đây: .
Câu 2: (2 điểm )
1) Giải phương trình: 
 	2) Giải hệ phương trình: 
Câu3: (2 điểm)
	Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng
	d1: và d2: 
Chứng minh rằng: d1 và d2 chéo nhau.
Viết phương trình đường thẳng d vuông góc với mặt phẳng (P): 7x + y - 4z = 0 và cắt hai đường thẳng d1, d2
Câu4: (2điểm)
1) Một đề thi gồm 6 câu hỏi trắc nghiệm, mỗi câu gồm 4 phương án trả lời và có duy nhất một phương án đúng. Một bạn học sinh đủ năng lực trả lời được 2 câu, các câu còn lại đành trả lời ngẫu nhiên. Tính xác suất để bạn học sinh đó trả lời chỉ đúng được 4 câu.
2) Cho x2+y2=1. Chứng minh rằng:
Phần Tự chọn: Thí sinh chọn Câu 5.a hoặc Câu 5.b
Câu5a: Theo chương trình không phân ban: (2 điểm)
	1. Trong mặt phẳng với hệ toạ độ Oxy cho DABC có A(0; 2) B(-2 -2) và 
C(4; -2). Gọi H là chân đường cao kẻ từ B; M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
	2. Chứng minh rằng: 
Câu5b: Theo chương trình phân ban: (2 điểm)
	1. Giải bất phương trình: 
	2. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lợt là trung điểm của các cạnh SB, BC, CD. Chứng minh AM vuông góc với BP và tính thể tích của khối tứ diện CMNP.

File đính kèm:

  • docDe luyen thi tuyen sinh DH CD nam 2009 De 1.doc