Một số bài toán hình tổng hợp

doc3 trang | Chia sẻ: haohao | Lượt xem: 2261 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Một số bài toán hình tổng hợp, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
MỘT SỐ BÀI TOÁN HÌNH TỔNG HỢP

Bài 1: Cho ∆ ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA
Chứng minh: góc BAD = góc ADB
Chứng minh: AS là phân giác của góc HAC
Vẽ DK vuông góc AC ( K thuộc AC). C/m: AK = AH
 Chứng minh: AB + AC < BC + 2AH
Bài 2: Cho tam giác ABC vuông ở C có góc A bằng 600 . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK AB ( K AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh:
AC = AK và AE CK
KA = KB
EB > AC
Ba đường thẳng AC, BD, KE cùng đi qua một điểm.
Bài 3 : Cho tam giác ABC vuông tại A,đường phân giác BD. Kẻ DEBC (EBC).Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh:
a/ABD =EBD
b/BD là đường trung trực của đoạn thẳng AE
c/ AD < DC
d/ và E, D, F thẳng hàng.
Bài 4: Cho cân tại A (). Kẻ BDAC (DAC), CE AB (E AB), BD và CE cắt nhau tại H.
Chứng minh: BD = CE
Chứng minh: cân
Chứng minh: AH là đường trung trực của BC
Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh: góc ECB và góc DKC.
Bài 5:Cho tam giác ABC có góc A bằng 900 ; AC> AB. Kẻ AH BC. Trên DC lấy điểm D sao cho HD = HB. Kẻ CE vuông góc với AD kéo dài. Chứng minh rằng:
Tam giác BAD cân
CE là phân giác của góc 
Gọi giao điểm của AH và CE là K. Chứng minh: KD// AB.
Tìm điều kiện của tam giác ABC để tam giác AKC đều.
Bài 6 : Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuông góc với BC (H BC). Biết HI = 1cm, HB = 2cm, HC = 3cm. Tính chu vi tam giác ABC?
Bài 7: Cho tam giác ABC vuông tại A. Từ 1 điểm K bất kỳ thuộc cạnh BC, vẽ KH ^ AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh:
a) AB// HK.
b) Tam giác AKI cân.
c) = .
d) AIC = AKC.
Bài 8: Cho tam gics ABC cấn tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh ABM =ACM.
b) Từ M vẽ MH ^ AB và MK ^ AC. Chứng minh BH = CK.
c) Từ B vẽ BP ^ AC, BP cắt MH tại I. Chứng minh tam giác IBM cân.
Bài 9: Cho tam giác ABC cân tại A (<900), vẽ BD ^ AC và CE ^ AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: ABD = ACE.
b) Chứng minh AED cân.
c) Chứng minh AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh = 
Bài 10: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh.
a) HB = CK.
b) = .
c) HK //DE
d) AHE = AKD.
e) AI ^ DE, I là giao điểm của DK và EH.
Bài 11: Cho góc x Oy và tia phân giác Ot. Trên tia Ot lấy điểm M bất kỳ; trên các tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB; gọi H là giao điểm của AB và Ot. Chứng minh:
a) MA = MB.	b) OM là đường trung trực của AB.
c) Cho biết AB = 6cm, OA = 5cm. Tính OH
Bài 12: Cho tam giác ABC vuông tại B, AM là trung tuyến. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. Chứng minh:
a) ABM = ECM	b) AC > CE	c) = 
d) BE // AC	e) EC 	^ BC
Bài 13: Cho tam giác ABC cân ở A, AB = AC = 5cm. Kẻ AH ^ BC (H Î BC).
a) Chứng minh BH = HC và = .
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD ^ AB (D Î AB); kẻ HE ^ AC (E Î AC); tam giác ADE là tam giác gì, vì sao?
Bài 14: Cho tam giác ABC, AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) Tam giác ADE cân	b) ABD = ACE.
Bài 15: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD	b) BMD = CME.
c) AM là tia phân giác của góc BAC.
Bài 16: Cho tam giác ABC, AB < AC, AD là tia phân giác của góc A. Tên tia AC lấy điểm E sao cho AE = AB.
a) Chứng minh BD = DE	
b) Gọi K là giao điểm của các đường thẳng AB và ED. Chứng minh DBK = DEC.
c) Tam giác AKC là tam giác gì? Chứng minh:
d) Chứng minh: AD^ KC.
Bài 17: Cho tam giác ABC vuông tại A. Đường trung trực của AB cắt AB tại E và BC tại F.
a) Chứng minh FA = FB
b) Từ F vẽ FH ^ AC (H Î AC). Chứng minh FH ^ EF.
c) Chứng minh FH = AE.
d) Chứng minh EH = và EH //BC.
Bài 18: Cho tam giác ABC, AB < AC và AM là tia phân giác của góc A. Trân AC lấy điểm D sao cho AD = AB.
a) Chứng minh BM = MD
b) Gọi K là giao điểm của AB và DM. Chứng minh DAK = BAC.
c) Chứng minh tam giac AKC cân.
d) So sánh KM và CM.
Bài 18: Tam giác ABC có - = 900. Các đường phân giác trong và ngoài của góc A cắt BC ở D và E. Chứng minh rằng tam giác ADE vuông cân.
Bài 19: Cho tam giác ABC có góc B > 900. Gọi d là đường trung trực của BC, O là giao điểm của AB và d. Trên tia đối của tia CO lấy điểm E sao cho CE = BA. Chứng minh rằng d là trung trực của AE.




File đính kèm:

  • docTuyen tap cac BT Hinh 7 hay.doc
Đề thi liên quan