Một số dạng toán ôn thi vào THPT
Bạn đang xem nội dung tài liệu Một số dạng toán ôn thi vào THPT, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
Mot so dang toan thi vao THPT Dạng 1: Toán tìm điều kiện để phương trình nguyên Ví dụ 1Cho biểu thức: a, Rút gọn b, Tìm những giá trị của a để M nguyên Giải a, Rút gọn M = b, Để M nguyên thì a-1 phải là ước của 2 a – 1 = 1 => a = 2 a – 1 = -1 => a = 0 ( loại ) a – 1 = 2 => a = 3 a – 1 = -2 => a = -1 ( loại ) Vậy M nguyên khi a = 2 hoặc a = 3 2, Ví dụ 2: Cho biểu thức: Tìm giá trị nguyên của a để A nguyên Giải Để A nguyên thì a – 1 là ước của 2 Tổng quát : Để giải toán tìm điều kiện để biểu thức nguyên ta làm theo các bước sau: Bước 1: Đặt điều kiện Bước 2: Rút gọn về dạng Nếu thì f(x) là bội của a Nếu thì f(x) là ước của a Bước 3: Căn cứ vào điều kiện loại những giá trị ngoại lai Dạng 6: Toán tính giá trị biểu thức chứa căn nhiều tầng Ví dụ : Tính Ta có : Dạng 2: Phương trình vô tỷ I.Định nghĩa : Phương trình vô tỷ là phương trình chứa ẩn ở biểu thức dưới căn bậc hai . II. Cách giải: Cách 1: Để khử căn ta bình phương hai vế Cách 2: Đặt ẩn phụ III. Ví dụ 1,Ví dụ 1: Giải phương trình: Cách 1: Bình phương hai vế x – 5 = x2 – 14x + 49 x2 – 14x – x + 49 + 5 = 0 x2 – 15x + 54 = 0 x1 = 6 ; x2 = 9 Lưu ý : * Nhận định kết quả : x1 = 6 loại vì thay vào phương trình (1) không phải là nghiệm . Vậy phương trình có nghiệm x = 9 * Có thể đặt điều kiện phương trình trước khi giải : Để phương trình có nghiệm thì : kết hợp Sau khi giải ta loại điều kiện không thích hợp Cách 2 Đặt ẩn phụ Đưa phương trình về dạng : Đặt phương trình có dạng y = y2 – 2 y2 – y – 2 = 0 Giải ta được y1 = - 1 ( loại) y2=2 2, Ví dụ 2: Giải phương trình Giải: Đặt điều kiện để căn thức có nghĩa: Chú ý : Không nên bình phương hai vế ngay vì sẽ phức tạp hơn mà ta nên chuyển vế. Bình phương hai vế ta được : Bình phương hai vế (x + 1) 2 = 4( x+ 1) x2- 2x – 3 =0 có nghiệm x1 = -1; x2 = 3 Cả hai giá trị này thoả mãn điều kiện Dạng 3: Phương trình chứa dấu giá trị tuyệt đối Ví dụ. 1, Ví dụ 1: Giải phương trình Đặt điều kiện * Nếu 2x + 1 ≥ 0 ta có phương trình x2 – ( 2x + 1 ) + 2 = 0 x2 – 2x – 1 + 2 = 0 x2 – 2x +1 = 0 => x1 = x2 = 1 * Nếu 2x + 1 ≤ 0 ta có phương trình x2 – ( -2x -1 ) + 2 =0 x2 + 2x + 3 = 0 Phương trình vô nghiệm Vậy phương trình ( 1) có nghiệm x= 1 2, Ví dụ 2: Giải phương trình ( Đề thi học sinh giỏi lớp 7 1999 – 2000) 3, Ví dụ 3: Giải phương trình Dạng 3 : Hệ phương trình Cách giảI một số hệ phương trình phức tạp 1, Ví dụ 1: Giải hệ phương trình Giải : Đặt ẩn phụ : Ta có hệ : 2, Ví dụ 2: Giải hệ phương trình 3, Ví dụ 3: Giải hệ phương trình : Hướng dẫn: Rút z từ (1) thay vào (2); (3) 4, Ví dụ 4: Giải hệ phương trình: Hướng dẫn: Nhân (1) với 4 rồi trừ cho (2) => (x2 + y 2 + z2 ) – 4( x+ y + z ) = 12 – 24 x2 – 4x + y2 -4y + z2 - 4z + 12 = 0 ( x2 – 4x + 4 ) + ( y 2 – 4y + 4 ) + ( z2 – 4z -4 ) = 0 ( x – 2 )2 + ( y – 2 )2 + ( z – 2 )2 = 0 => x = y = z = 2 5, Ví dụ 5: Giải hệ phương trình ( Đề thi vào 10 năm 1998 – 1999) 6, Ví dụ 6: Giải hệ phương trình : ( Đề thi vào 10 năm 2002 – 2003 ) Dạng 4: Toán cực trị 1.Ví dụ 1: Cho biểu thức: Rút gọn A. Với giá trị nào của x thì A nhỏ nhất. Giải: a. Rút gọn được: b. A nhỏ nhất nếu mẫu là lớn nhất Gọi ta có K(1- K) = -K2+ K -(K2- K) = -(K2 - 2K/2 +1/4 -1/4) = -[(K-1/4)2 – 1/4] Mẫu này lớn nhất khi: -[(K-1/4)2- 1/4] là nhỏ nhất Và nó nhỏ nhất khi: K= 1/4 Hay =>A nhỏ nhất =4 2.Ví dụ 2: Cho biểu thức: a, Rút gọn b, Tìm giá trị lớn nhất của M và giá trị tương ứng của x 3. Ví dụ 3: Tìm giá trị lớn nhất của biểu thức Giải: Ta nhận thấy x = 0 => M = 0. Vậy M lớn nhất x≠ 0. Chia cả tử và mẫu cho x2 Vậy M lớn nhất khi mẫu nhỏ nhất Mẫu nhỏ nhất khi nhỏ nhất Vậy nhỏ nhất x =1 Vậy 4.Ví dụ 4: Tìm giá trị nhỏ nhất của biểu thức : Giải: Biết rằng |A| + |B| ≥|A + B| Vậy Y nhỏ nhất là 2 khi Dạng 5: Toán tính giá trị biểu thức chứa căn nhiều tầng Ví dụ : Tính Ta có : Loại 7: Biện luận phương trình 1.Ví dụ 1: Cho phương trình: x2 – ( m + 2 )x + m + 1 = 0 ( x là ẩn ) a, Giải phương trình khi b, Tìm giá trị m để phương trình có hai nghiệm trái dấu c, Gọi x1 , x2 là hai nghiệm phương trình . Tìm giá trị m để : x1( 1 – 2x2 ) + x2( 1 – 2x1 ) = m2 Giải a, Thay vào ta có phương trình : Phương trình có hai nghiệm : b, Phương trình có hai nghiệm trái dấu khi x1x2 = hay a.c < 0 1(m + 1) < 0 m < -1 c, x1( 1 – 2x2) + x2 ( 1 – 2x1) = m2 Theo viet ta có : Thay vào (*) ta có : 2(m + 2 ) – 4 ( m + 1 ) = m2 2m + 4 – 4m – 4 = m2 m2 + 2m = 0 m ( m + 2 ) = 0 2.Ví dụ 2: Cho phương trình : x2 – 2mx + 2m – 1 = 0 1, Chưng tỏ phương trình có hai nghiệm với mọi m 2, Đặt a. Chứng minh A = 8m2 – 18m + 9 b. Tìm m sao cho A = 27 3, Tìm m sao cho nghiệm này bằng hai lần nghiệm kia Giải 1. Xét => Phương trình luôn có nghiệm với mọi m a. = Theo viet ta có : => điều phải chứng minh b, Tìm m để A = 27 chính là giảI phương trình 8m2 – 18m + 9 = 27 8m2 – 18m – 18 = 0 4m2 – 9m – 9 = 0 Phương trình có hai nghiệm : m1 = 3 , m2 = -3/4 2.Tìm m để x1 = 2x2 Theo viet ta có : x1 + x2 = -b/a = 2m Hay 2x2 + x2 = 2m 3x2 = 2m x2 = 2m/3 x1 = 4m/3 Theo viet: Phương trình có hai nghiệm : m1 = 3/2; m2 = 3/4 Hướng dẫn giải các đề thi vào 10 phần hình học Đề 1 ( Đề thi vào lớp 10 năm 2000 – 2001) GT đều ; OB = OC KL a, đồng dạng với BC2 = 4BM b, MO là tia phân giác c, Đường thẳng MN luôn tiếp xúc với đường tròn cố định khi quay O Giải a, Trong có => ( vì Vì Vì đều Từ (1) và (2) => đồng dạng với => b, Ta có mà => đồng dạng với => CM là tia phân giác của c, Thật vậy khi quay tới vị trí ( hình vẽ đỏ ) lúc đó M, N là trung điểm của AB và AC đường cao AO ┴ MN tại H và HO = 1/2AO Như vậy đường tròn cố định đó có tâm tại O , bán kính bằng AO/2 Đề 2 ( Đề thi vào lớp 10 năm 2002 – 2003 ) 1, Chứng minh AC // MO Thậy vậy cân tại O ( hai góc ở đáy ) Theo chứng minh tính chất 2 của tiếp tuyến thì Theo định lí 7 (góc ngoài bằng tổng hai góc trong) Hay AC // MO 2, Chứng minh 5 điểm M, B, O, A, D cùng nằm trên một đường tròn * Xét tứ giác MBOA có => MBOA nội tiếp đường tròn đường kính MO * Xét tứ giác MDAO Trong ( tổng hai góc nhọn trong tam giác vuông ) Trong Theo chứng minh trên : Trong tức giác MDAO có D và M nhìn AO đưới góc bằng nhau α0 Vậy M, D thuộc cung AO chứa góc α0 Hay MDAO nội tiếp Ta lại có => MO là đường kính đường tròn ngoại tiếp Vậy 5 điểm M, B, O, A, D cùng nằm trên đường tròn đường kính MO 3, Tìm M trên d để đều , hãy chỉ ra cách xác định M. Thậy vậy để AOC là tam giác đều nghĩa là Để xác định M từ O quay một cung có bán kính bằng 2R cắt d tại M . Thoả mãn điều kiện nói trên. Đề 3 ( Đề thi vào 10 năm 1998 - 1999 ) a, AE là phân giác của Thật vậy BC ┴ EOF => ( góc nội tiếp chắn hai cung nhau ) =>AE là phân giác của b, BD // AE cân tại A => c, Nếu I là trung điểm của BC => Ta lại có ( góc nội tiếp chắn đường tròn) Từ (1) (2) => =>I, A, F thẳng hàng Đề 4 ( Đề 3 trong bộ đề ôn vào 10 ) a, Chứng minh tam giác POQ vuông Xét theo chứng minh tính chất 2 tiếp tuyến ta có =>OP là phân giác của => OQ là phân giác của Mà là 2 góc kề bù do đó tại O ( theo định lí ) =>tam giác POQ vuông tại O b, Chứng minh đồng dạng với ấy tam giác CED là tam giác vuông tại E ( góc nội tiếp chắn 1/2 đường tròn ) Có ( hai góc nội tiếp cùng chắn cung ED ) =>Tam giác POQ đồng dạng với tam giác CED c, Tính tích CP . DQ theo R Theo tính chất 2 của tiếp tuyến ta có : CP = PE DQ = EQ Xét có OE là đường cao bằng R Theo hệ thức lượng : OE2 = PE . EQ hay OE2 = CP . DQ R2 = CP . DQ d, Khi PC = R/2 hãy chứng minh rằng Từ ý c ta có DQ= R2/CP = Vì tổng số diện tích hai tam giác đồng dạng bằng bình phương tổng số đồng dạng Vậy Mà PQ = PE + EQ = PE + DQ =>PQ = R/2 + 2R = 5R/2 Thay vào (1) ta có Đề 5 ( Bộ đề trang 17 ) a, Tứ giác BHCD, BCDE là hình gì ? Tại sao ? * Xét t/g BHCD có => BH // DC CM tương tự ta có CH // BD Vậy BHCD là hình bình hành *Xét t/g BCDE Ta có BC // ED ( vì cùng vuông góc với AE) => BCDE là hình thang Do BC // ED => => BE = CD =>BCDE là hình thang cân b, Chứng minh H là tâm đường tròn nội tiếp tam giác A’B’C’ và EFI thật vậy H là giao các đường phân giác trong =>H là tâm đường tròn nội tiếp tam giác c, Chứng minh M là giao 2 đường tròn ngoại tiếp tứ giác AC’HB’ và đường tròn O ( góc nội tiếp chắn 1/2 đường tròn ) Lấy O’ là trung điểm của AH => O’M =1/2 AH Mà AH là đường kính đường tròn ngoại tiếp tg AC’HB’ Vậy M là giao của 2 đường tròn nói trên d, Nếu tam giác ABC là tam giác đều thì kết luận - hình thoi - Kết quả không thay đổi Hình thang cân biến thành tam giác BDC
File đính kèm:
- MOT SO DANG TOAN ON THI VAO THPT.doc