Một số đề giải toán bằng máy tính casio: Fx 500Ms, Fx570Ms
Bạn đang xem trước 20 trang mẫu tài liệu Một số đề giải toán bằng máy tính casio: Fx 500Ms, Fx570Ms, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Một số đề giải toán Bằng máy tính casio: Fx 500Ms, Fx570Ms. 1)Đề Thi 2001 khu vực khối 10.( thời gian: 150 phút ) Bài 1: Tìm các ước nguyên tố nhỏ nhất và lớn nhất của số: 2152+3142. Bài 2: Tìm số lớn nhất, nhỏ nhất trong các số tự nhiên có dạng: biết nó chia hết cho 7. Bài 3: tính giá trị của biểu thức với x=1,234;y=-4,321 và z=-3,5142 Bài 4: Với x1,x2 và (x1<x2) là nghiệm của 2x2-3x-4=0 Tính s= Bài 5: Tính giá trị biểu thức sau: p=. Bài 6: Cho đường thằng (dm): y= (m+1)x + m2 + 2 và Parabol (p): y= ax2 + bx + c. Đi qua các điểm A(1;3), B( -2;4), C( -3;5). a) Tính toạ độ giao điểm của (d1) và (p). b) Tìm các giá trị của m sao cho (dm) có điểm chung với (p). Bài 7: Cho tam giác vuông với các cạnh góc vuông là: . Tính tổng các bình phương của các trung tuyến xuống các cạnh đó. Bài 8: Tam giác ABC nội tiếp đường tròn tâm O bán kính R=6cm, góc OAB bằng 51036,23.. góc OAC bằng 22018,42,,. a)Tính diện tích;cạnh lớn nhất của tam giác khi tâm O ở trong tam giác. b)Tính diện tích;cạnh nhỏ nhất của tam giác khi tâm O ở ngoài tam giác. Bài 9: Tính diện tích phần được tô đậm trong hình tròn đơn vị. Bài 10: Tìm gần đúng tọa độ các giao điểm của parabol (P) y2=3,1325x và elip (E) Bài 11: Tìm gần đúng tọa độ các giao điểm của Elip (E) và đường tròn (C) (x-1,0012)2+(y-0,4312)2=2008 2)Đề Thi 2001 khu vực khối 11. .( thời gian: 150 phút ) Bài 1: Cho phương trình: . a)Tìm nghiệm (theo độ,phút,giây) của phương trình khi k=3,1432. b)Nếu là nghiệm của phương trình thì tìm k (với 5 chữ số thập phân). c)Tìm tất cả các giá trị của k để phương trình có nghiệm?. Bài 2: Cho Sn = với n là số tự nhiên. a)Tính S15 với 6 chữ số thập phân. b)Tìm giới hạn của Sn. Khi n. Bài 3: 3 số dương lập thành một cấp số nhân.Tổng là 2001 và tích là p. a)Tìm các số đó? viết theo thứ tự tăng dần. Nếu p= 20001. b)Tìm giá trị nguyên lớn nhất của p để có thể tìm được các số hạng của cấp số nhân. Bài 4: Cho phương trình: x + log6( 47- 6x ) = m. (1) a)Tìm nghiệm của (1) với 4 chữ số thập phân khi m= 0,4287. b)Tìm giá trị nguyên lớn nhất của m để (1) có nghiệm? Bài 5: Tìm các ước nguyên tố nhỏ nhất và lớn nhất của số: 2152 + 3142. Bài 6: Tìm số lớn nhất và số nhỏ nhất trong các số có dạng: biết nó chia hết cho 13. Bài 7: Hình chóp S.ABCD có đáy ABCD là hình thang vuông với ABAD,ABAC.SA=SB=AB=BC=4AD. Mặt (SAB)mặt (ABCD). Hãy tính góc ( theo độ,phút,giây ) giữa hai mặt (SAB) và (SCD). Bài 8: Cho hình nón có đường sinh 10 dm và góc ở đỉnh 80054,25,,. a) Tính thể tích khối nón với 4 chữ số thập phân. b) Tính diện tích toàn phần hình nón với 6 chữ số thập phân. c) Tính bán kính mặt cầu nội tiếp hình nón với 6 chữ số thập phân. Bài 9: Cho Sn=3.2.1x+4.3.2x2+5.4.3x3+...+(n+2)(n+1)nxn Tính S10 khi x=-0,010203 Bài 10:Tính tỉ lệ diện tích phần tô đậm & phần còn lại trong hình tròn đơn vị (hình 1) hình 1 3)Đề Thi 2002 khu vực khối 12. .( thời gian: 150 phút ) Bài 1: Cho hàm số: f(x) = . a)Tính giá trị của hàm số với 5 chữ số thập phân tại x = . b)Tính a,b để đường thẳng y= ax + b là tiếp tuyến của đồ thị tại điểm có hoành độ x=. Bài 2: Cho f(x)=11x3-101x2+1001x-10001. Hãy cho biết: f(x)=0 có nghiệm nguyên trên đoạn [-1000;1000] hay không? Bài 3: Tìm ước chung lớn nhất của hai số: a=24614205, b=10719433. Bài 4: Tìm nghiệm gần đúng của phương trình: cosx = 2x. Bài 5:Một khúc gỗ hình trụ có đường kính 48,7 cm vào máy bong gỗ máy xoay 178 vòng thì được một dải băng gỗ mỏng (nhằm ép dính làm gỗ dán) và một khúc gỗ hình trụ mới có đường kính7,8 cm.Giả thiết dải băng gỗ được máy bong ra lúc nào cũng có độ dày như nhau. Hãy tính chiều dài của băng gỗ với 2 chữ số thập phân. Bài 6: Tìm gần đúng toạ độ các giao điểm của hai điểm A,B trên (C) y= sao cho AB nhỏ nhất? Bài 7:Tìm gần đúng giá trị lớn nhất ,nhỏ nhất của hàm số: trên đoạn [-2;2]. Bài 8: Cho hai đường tròn có các phơng trình tương ứng: (C1): x2+y2+5x-6y+1=0 và (C2): x2+y2-2x+3y-2=0 a)Tính gần đúng toạ độ các giao điểm của hai đường tròn đó? b)Tìm a và b để đường tròn có phương trình: x2+y2+ax+by+5=0 cũng đi qua hai giao điểm trên? Bài 9:Tam gíac PQR có góc P=450,góc R=1050; I,J là hai điểm tương ứng trên hai cạnh PQPR sao cho đường thẳng IJ vừa tạo với cạnh PR một góc 750 vừa chia tam giác thành hai phần có diện tích bằng nhau. Tính giá trị gần đúng của tỉ số: PJ/PR. Bài10: Gọi M là giao điểm có cả hai toạ độ dương của Hypebol (H): và Parabol (P):y2=5x. a)Tính gần đúng toạ độ của điểm M. b)Tiếp tuyến của Hypebol tại điểm M còn cắt parabol tại diểm N khác với M.Tính gần đúng toạ độ của điểm N. 4)Đề Thi 2003 khu vực khối 12. .( thời gian: 150 phút ) Bài 1: Cho hàm số f(x) = 2x2 + 3x - . a)Tính gần đúng giá trị của hàm số tại x = . b)Tính gần đúng giá trị của các hệ số a và b để đường thẳng: y=ax+b tiếp xúc với đồ thị hàm số tại điểm có hoành độ x=. Bài 2: Tìm số d trong phép chia số 20012010 cho số 2003. Bài 3: Tìm giá trị gần đúng của điểm tới hạn của hàm số: f(x) = 3cosx + 4sinx + 5x trên đoạn [0;2]. Bài 4: Tính gần đúng giá trị lớn nhất và nhỏ nhất của hàm số f(x) = trên đoạn [1;2]. Bài 5: Cho Sn = 3+ với n là số tự nhiên. a)Tính S15 với 6 chữ số thập phân. b)Tìm giới hạn của Sn. Khi n. Bài 6: Tìm gần đúng toạ độ giao điểm của đồ thị hàm số: với đường thẳng . Bài 7: Đồ thị của hàm số y=ax3+bx2+cx+d đi qua các điểm: A(1;-3),B(-2;4),C(-1;5),D(2;3). a)Xác định các hệ số: a,b,c,d. b)Tính gần đúng giá trị cực đại,giá trị cực tiểu của hàm số đó. Bài 8:Hình tứ giác ABCD có các cạnh là:AB=7,BC=6,CD=5,DB=4.Chân đường vuông góc hạ từ A xuống mặt phẳng (BCD) là trọng tâm BCD. Tính diện tích toàn phần và thể tích của tứ diện. Bài 9: Cho hàm số . a) Tính gần đúng điểm cực trị và cực trị của hàm số ? b) Tính các giá trị của a và b nếu đường thẳng (d): y=ax+b đi qua hai điểm cực đại và điểm cực tiểu của đồ thị hàm số đó. Bài 10: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của số có dạng: biết số đó chia hết cho 29 và x,y,z,t . 5)Đề Thi Lớp 12 THPTngày: 26/2/ 2004 thời gian 150 phút. Sở giáo dục Thanh hoá Bài 1: (5 điểm) Tính gần đúng giá trị a,b và tìm tiếp điểm M. nếu đường thẳng y=ax+b là tiếp tuyến của đồ thị hàm số: a b M( ; ) Bài 2: (5 điểm) Tính gần đúng các nghiệm ( độ,phút,giây ) của phương trình: sin2x + 3( sinx- cosx ) = 2. x1 x2 Bài 3: (5 điểm) Tính gần đúng diện tích của tứ giác ABCD với các đỉnh: A(1;3),B(2;-5),C(-4;-3),D(-3;4). S Bài 4: (5 điểm)Tính gần đúng khoảng cách d giữa các điểm cực đai và điểm cực tiểu của đồ thị hàm số: . d Bài 5: (5 điểm) Tính gần đúng diện tích toàn phần của hình tứ diện ABCD có: AB=AC=AD=CD=8dm.Góc CBD=900,góc BCD=50028’36’’. Stp Bài 6: (5 điểm)Tính gần đúng các nghiệm của phương trình:3x=x+2cosx. x1 x2 Bài 7: (5 điểm) Tính gần đúng a,b,c để đồ thị hàm số . đi qua các điểm: A(1;1,5),B(-1;0),C(-2;-2). a b c Bài 8:(5 điểm)Tính gần đúng giới hạn của dãy số có số hạng tổng quát: limun Bài 9:(5điểm) Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số: . Maxf(x) Minf(x) Bài 10: (5 điểm) Trong quá trình làm đèn chùm pha lê, người ta cho mài những viên bi thuỷ tinh pha lê hình cầu để tạo ra những hạt thuỷ tinh pha lê hình đa diện đều có độ triết quang cao hơn. Biết rằng các hạt thuỷ tinh pha lê được tạo ra có hình đa diện đều nội tiếp hình cầu với 20 mặt là những tam giác đều mà cạnh của tam giác đều này bằng 2 lần cạnh của thập giác đều nội tiếp đường tròn lớn của hình cầu.Tính gần đúng khối lượng thành phẩm có thể thu về từ một tấn phôi các viên bi hình cầu. 6) Đề thi Lớp 12 THPT ngày: 22/2/ 2006. thời gian 150 phút. Sở giáo dục Thanh hoá Câu 1: Cho (C): Tìm hoành độ của những điểm nằm trên (C) cách đều hai trục. x1 x2 Câu 2: Tìm nghiệm của phương trình: 5cosx+3sinx= 4. x1 x2 Câu 3: Cho tam giác ABC có: =46034/25//; AB=5cm. AC=4cm. Tính chu vi 2p của . Tính diện tích S hình tròn ngoại tiếp 2p S Câu 4: Cho y= 2x3-3(a+3)x2+18ax-8 (C) Tìm các giá trị của a sao cho (C) tiếp xúc trục hoành. a= Câu 5: Tìm các giá trị của a,b sao cho y=ax+b tiếp xúc với hai đường tròn: (C1): x2+y2-4y-5= 0, (C2): x2+y2-. a b Câu 3: Cho tam giác ABC có: =46034/25//; AB=5cm. AC=4cm. Tính chu vi 2p của . Tính diện tích S hình tròn ngoại tiếp 2p S Câu 7: Cho hình chóp S.ABC có: SASB, SBSC, SASC và SA=3, SB=4, SC=5.Từ S hạ SH Tính SH. Tính SABC. SH SABC Câu 8: Tìm Max,Min của y= . Maxy miny Câu 9: Cho (C) và A(0;4), B(-5;0). Tìm hoành độ điểm M trên (C) sao cho: SABC nhỏ nhất. x= Câu 10: Cho cân tại A nội tiếp đường tròn bán kính 5cm. Từ B hạ đường cao BE.Tính Max BE. MaxBE= Một số đề tham khảo Đề 1: Vòng 1 Sở GD & ĐT Hà nội 1996 ( thời gian 30 phút ). Câu 1: Tìm x với x Câu 2: Giải phương trình: 1,23785 x2 + 4,35816x-6,98153 = 0 x1 x2 Câu3: Tính A biết A= Câu4: Tính góc C bằng độ, phút,giây của tam giác ABC biết: a=9,357m;b=6,712m;c=4,671m C= Câu5: Tính độ dài trung tuyến AM của tam giác ABC biết: a=9,357m;b=6,712m;c=4,671m AM Câu6: Tính bán kính R đường tròn ngoại tiếp của tam giác ABC biết: a=9,357m;b=6,712m;c=4,671m R Câu7: Đơn giản biểu thức: A=. A Câu8:Số tiền 58 000đ đợc gửi ngân hàng theo lãi kép ( tiền lãi sau mỗi tháng được nhập vào gốc ).Sau 25 tháng thì được cả vốn lẫn lãi là: 84155đ. Tính lãi suất của 100đ trong 1 tháng. Câu9: Cho số liệu: Biến lượng 135 642 498 576 637 Tần số 7 12 23 14 11 Tính tổng số liệu,số trung bình & phương sai. Câu10: Cho ABC có góc B=49027’góc C=730 52’; BC=18,53cm. Tính diện tích tam giác ABC. S Câu11: Tìm một nghiệm gần đúng ( lấy 2 chữ số phần thập phân ) của phương trình: x2 + sinx – 1 = 0. x Câu12: Tìm một nghiệm gần đúng ( lấy 6 chữ số phần thập phân ) của phương trình: x3 + 5x – 1 = 0. x Câu13:Tính khoảng cách giữa d hai đỉnh không liên tiếp của một ngôi sao năm cánh nội tiếp trong một đường tròn bán kính R=5,712cm. d Câu14:Cho cosA=0,8516;tanB=3,1725;sinC=0,4351 với A,B,C nhọn. Tính X=sin(A+B-C). X Câu15: Tính n để: n!5,51028 (n+1)! Đề 2: Vòng chung kết Sở GD & ĐT Hà nội: 18/12/1996 ( thời gian 30 phút ). Câu1: Tính A= khi x=1,8165. A Câu2:Cho tam giác ABC có a=8,751;b=6,318;c=7,624.Tính đường cao AH và bán kính r của đường tròn nội tiếp tam giác ABC. AH r Câu3: Cho tam giác ABC có a=8,751; b=6,318; c=7,624. Tính đường phân giác trong AD của tam giác ABC. AD Câu4: Tính A= khi tanx=2,324 và 00<x<900 A Câu5:Cho tam giác ABC có chu vi là 58cm.Góc B=57018’;góc C=82035’. Tính độ dài các cạnh AB,AC,BC của tam giác ABC. AB AC BC Câu6: Cho cosx=0,81735 ( 00<x<900 ). Tính a=sin3x; b=cos7x. a b Câu7:Tính (bằng độ và phút)góc hợp bởi hai đường chéo của tứ giác lồi nội tiếp được trong đường tròn các cạnh:a=5,32;b=3,45;c=3,96;d=4,68. Câu8:Có 100 người đắp 60m đê chống lũ.Nhóm đàn ông đắp 5m/người, nhóm đàn bà đắp 3m/người,nhóm học sinh đắp 0,2m/người. Tính số người của mỗi nhóm? đ/ông= đ/bà= h/sinh= Câu9: Tìm một nghiệm gần đúng ( lấy 3 chữ số phần thập phân ) của phương trình: x2 -tanx – 1 = 0. x Câu10: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x2 - – 1 = 0. x Câu11: Tìm một nghiệm gần đúng ( lấy 6 chữ số phần thập phân ) của phương trình: x6 -15x –25 = 0. x Câu12: Tìm một nghiệm gần đúng ( lấy 7 chữ số phần thập phân ) của phương trình: x9 +x –10 = 0. x Câu13: Tìm một nghiệm gần đúng ( lấy 8 chữ số phần thập phân ) của phương trình: x3 –cosx = 0. x Câu14: Tìm một nghiệm gần đúng ( lấy 9 chữ số phần thập phân ) của phương trình: x -cotx = 0. ( 0<x< ) x Câu15: Hai véc tơ: có ; và . Tính góc bằng độ và phút. Đề 3: Lớp 10 Sở GD & ĐT Thanh Hoá 4/2000 ( thời gian 30 phút ). Câu1: Cho tam giác ABC vuông ở A với:AB=3,74;AC=4,51. Tính đường cao AH của tam giác ABC. AH Câu2: Cho tam giác ABC vuông ở A với:AB=3,74;AC=4,51. Tính góc B bằng độ, phút,giây. B= Câu3: Cho tam giác ABC vuông ở A với:AB=3,74;AC=4,51.Kẻ đường phân giác trong của góc A cắt BC ở I. Tính độ dài AI. AI Câu4: Cho hàm số y=x4+5x3-3x2+x-1 .Tính y khi x=1,35627. y Câu5: Parabol (P):y=4,7x2-3,4x-4,6.Tìm I(x0;y0) đỉnh của Parabol (P). I( ; ) Câu6: Tính A biết A Câu7: Tính A= khi x=1,8165. A Câu8: Cho sinx=0,32167 ( 00<x<900 ). Tính A= cos2x-2 sinx-sin3x. A Câu9: Tính A= khi tanx=2,324 và 00<x<900 A Câu10: Tính A= khi sinx= và 00<x<900 A Câu11: Cho p(x) = x4+7x3+2x2+13x+a.Tính a để p(x) chia hết cho x+6. a Câu 12: Giải phương trình: 1,23785 x2 + 4,35816x-6,98153 = 0 x1 x2 Câu13: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x - – 1 = 0. x Câu14: Giả hệ với x,y > 0. x y x y Câu 15: Dân số một nước là 65 triệu,mức tăng dân số một năm là 1,2%. Tính số dân sau15 năm của nước ấy. Đề 4: Lớp 11&12 Sở GD & ĐT Thanh Hoá 4/2000 ( thời gian 30 phút ). Câu1: Cho tam giác ABC 900< A<1800 và sinA=0,6153;AB=17,2; AC=14,6. Tính cạnh BC của tam giác ABC. BC Câu2: Cho tam giác ABC 900< A<1800 và sinA=0,6153;AB=17,2; AC=14,6. Tính độ dài AM trung tuyến của tam giác ABC. AM Câu3: Cho tam giác ABC 900< A<1800 và sinA=0,6153;AB=17,2; AC=14,6. Tính góc B theo độ và phút. B= Câu4: Tìm điểm I(x0;y0) đỉnh của Parabol (P): y= 4,7x2-3,4x-4,6 . x0 y0 Câu5: Tính A biết A Câu6: Tính A= khi cosx=0,7651 với: 00<x<900 A Câu7: Tính A= khi sinx= và 00<x<900 A Câu8: Tính A= khi = . A Câu9: Cho p(x) = x4+7x3+2x2+13x+a . Tính a để p(x) chia hết cho x+6. a Câu 10: Dân số một nước là 65 triệu,mức tăng dân số một năm là 1,2%. Tính số dân sau 15 năm của nước ấy. Câu11: Giả hệ với x,y > 0. x y x y Câu12: Tìm một nghiệm gần đúng ( lấy 7 chữ số phần thập phân ) của phương trình: . x Đề 5: Vòng tỉnh Sở GD & ĐT Đồng Nai 2/1998 ( thời gian 30 phút ). Câu 1: Giải phương trình: 2,354 x2 +1,542x-3,141 = 0 kết quả lấy đủ 9 chữ số thập phân. x1 x2 Câu2: Giả hệ ( lấy kết quả với 9 chữ số phần thập phân ). x y Câu3: Tìm số dư trong phép chia Câu4:Một ngôi sao năm cánh có khoảng cách giữa hai đỉnh không liên tiếp là:9,651cm.Tính bán kính R đường tròn ngoại tiếp (qua 5 đỉnh). R Câu5: Cho sinx=0,813 ( 00<x<900 ). Tính A= cos5x A Câu6: Cho tam giác ABC có ba cạnh a=8,32;b=7,61:c=6,95 (cm). Tính góc A theo: độ,phút và giây. A= Câu7: Giả hệ x y x y Câu8: Cho tam giác ABC vuông ở A với AB=15;BC=26(cm). Đường phân giác trong BI của góc B cắt AC ở I. Tính độ dài IC. IC Câu9: Tìm một nghiệm gần đúng ( lấy 6 chữ số phần thập phân ) của phương trình: x9 +x –7 = 0. x Câu10: Cho số liệu: số liệu 173 52 81 37 Tần số 3 7 4 5 Tính số trung bình & phương sai . Câu11: Tính với 6 chữ số phần thập phân. B Câu12: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x3 +5x – 2 = 0. x Câu13:Cho ABC có a=15,637;b=13,154;c=12,981(cm).Ba đường phân giác trong cắt ba cạnh tại A1,B1,C1.Tính diện tích S của A1B1C1. S Câu14: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x + – 2 = 0. x Câu15: Cho hình thang cân có hai đường chéo vuông góc với nhau; đáy nhỏ dài 15,34 cạnh bên dài 20,35(cm).Tính độ dài đáy lớn. Đề 6: Vòng 1Sở GD & ĐT Tp Hồ Chí Minh 3/1998 ( thời gian 20 phút ). Câu1: Tìm số dư trong phép chia ( kết quả lấy 4 chữ số phần thập phân ) Câu 2: Giải phương trình: 1,9815 x2 +16,8321x+1,0581 = 0 kết quả lấy 5 chữ số thập phân. x1 x2 Câu3: Cho tam giác ABC có 3 cạnh a=12,347;b=11,698;c=9,543 (cm). Tính độ dài AM trung tuyến của tam giác ABC. AM Câu4: Cho tam giác ABC có 3 cạnh a=12,347;b=11,698;c=9,543 (cm). Tính sinC của tam giác ABC. Câu5: Cho cosx=0,8157 ( 00<x<900 ). Tính A= sin3x A Câu6: Cho sinx=0,6132 ( 00<x<900 ). Tính A= tanx A Câu7: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: 3x -2 – 5 = 0. x Câu8: Một cấp số nhân có số hạng đâù u1=1,678,công bội q=9/8. Tính tổng S17 ( kết quả lấy 5 chữ số phần thập phân ). S17 Câu9: Qua kỳ thi 2105 h/s xếp theo điểm số nh sau.Tính tỉ lệ phần trăm ( lấy 2 chữ số phần thập phân ) học sinh theo từng loại điểm. Điểm 0 1 2 3 4 5 6 7 8 9 10 số h/sinh 27 48 71 293 308 482 326 284 179 52 35 Tỉ lệ Câu10: Cho hình thang cân có hai đường chéo vuông góc với nhau; đáy nhỏ dài 13,724 cạnh bên dài 24,867(cm).Tính diện tích S. ( kết quả lấy 4 chữ số phần thập phân ). S Câu11: Giải hệ x y x y Câu12: Cho tam giác ABC có bán kính đường tròn ngoại tiếp và nội tiếp lần lượt là: 3,9017 và 1,8225 (cm).Tính khoảng cách hai tâm đó. Câu13: Cho tam giác ABC có cạnh a=7,615;b=5,837;c=6,329 (cm). AH Tính đường cao AH của tam giác ABC. Đề 7: Vòng chung kết Sở GD & ĐT Tp Hồ Chí Minh 3/1998 ( thời gian 20 phút ). Câu 1: Giải phương trình: 2,3541 x2 +1,3749x-1,2157 = 0 kết quả lấy 5 chữ số thập phân. x1 x2 Câu2:Giải hệ (lấy kết quả 3 chữ số thập phân). x y Câu3: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x5 +2x2-9x +3 = 0. x Câu4: Tính góc x=HCH (độ,phút và giây) trong phân tử mêtan. ( H: Hyđrô; C: Cácbon ) x Câu5: Hình chóp tứ giác đêù S.ABCD,biết trung đoạn d=3,415 cm, góc giữa cạnh bên và đáy bằng 12017’.Tính thể tích V V Câu6: Cho tam giác ABC có 3 cạnh a=12,758;b=11,932;c=9,657 (cm). Tính độ dài đường phân giác trong AA1. AA1 Câu7: Cho tam giác ABC có 3 cạnh a=12,758;b=11,932;c=9,657 (cm). Có AA1, BB1, CC1 là các đường phân giác trong(). Tính diện tích S củaA1B1C1. S= Câu 8: Tìm một nghiệm gần đúng ( lấy 5 chữ số phần thập phân ) của phương trình: x5 -3xsin(3x-4) + 2 = 0. x Câu9: Cho tứ giác lồi ABCD nội tiếp trong đường tròn bán kính R. Có a=3,657;b=4,155;c=5,654;d=2,165 (cm).Tính bán kính R. R= C âu10: Tìm một nghiệm âm gần đúng (lấy 4 chữ số phần thập phân) của phương trình: x10 -5x3+2x -3 = 0. x Câu11: Tìm một nghiệm gần đúng ( lấy 3 chữ số phần thập phân ) của phương trình: 2y+3y +5y =11y . y Câu12: Cho tam giác ABC có góc B=48036 ’,góc C=630 42’,bán kính đường tròn ngoại tiếp R=7,268 (cm).Tính diện tích ABC. S Câu13: Cho tứ giác lồi ABCD. Có các cạnh là:18;34;56;27 (cm). Và B+D=2100.Tính diện tích tứ giác.. S Đề tham khảo Sở GD & ĐT Thanh hóa ( thời gian 150 phút ). Đề số 1: Bài 1: Cho hàm số . a) Tính gần đúng giá trị cực đại và giá trị cực tiểu của hàm số đó? ycđ yct b) Tính giá trị a và b nếu đường thẳng đi qua hai điểm cực đại và điểm cực tiểu của đồ thị hàm số. a b Bài 2: Tam giác ABC có AB=5dm;AC=4dm;góc A=46034’25”. a) Tính gần đúng chu vi tam giác đó. 2p b) tính diện tích hình tròn ngoại tiếp ABC. S Bài 3: Tính gần đúng giá trị lớn nhất, nhỏ nhất của hàm số: maxf(x) minf(x) Bài 4: Tính gần đúng diện tích toàn phần của hình chóp S.ABCD biết: ABCD là hình chữ nhật có các cạnh AB=6dm;AD=4dm; cạnh bên SA=8dm và vuông góc với đáy. Stp Bài 5: Tính gần đúng toạ độ các giao điểm A,B của đường thẳng: (d): 8x-y=35 và Hypebol (H): . A( ; ) B( ; ) Bài 6: Tìm nghiệm gần đúng(độ ,phút ,giây) của phương trình: 3cos2x+4sinx+6=0. x1 x2 Bài 7: Cho hai đường tròn (C1):x2 + y2 - 10x + 6y + 1 = 0 và (C2): x2 + y2 -6x + 8y – 12 = 0. a)Viết phương trình đường thẳng qua hai tâm đó. b)Viết phương trình đường thẳng qua các giao điểm của hai đường tròn đó. c)Tìm toạ độ giao điểm I của hai đường thẳng đó. I( ; ) Bài 8: Tính gần đúng toạ độ các giao điểm A,B của đường thẳng: (d): 2x-3y+6=0 và Elíp (E): . A( ; ) B( ; ) Bài 9: Tính gần đúng nghiệm của phương trình: x Bài 10: Tính diện tích tam giác ABC có A(4;-3),B(-5;2),C(5;7). S Sở GD & ĐT Thanh hóa ( thời gian 150 phút ). Đề số 2: Bài 1: Tìm nghiệm gần đúng(độ ,phút ,giây) của phương trình: 3cos2x+5sin2x=4. x1 x2 Bài 2: Tính gần đúng diện tích tam giác ABC: có AB=6dm; A=84013’38” và B=34051’33”. S dm3 Bài 3: Tính gần đúng giá trị lớn nhất, nhỏ nhất của hàm số: f(x)=2x +3cosx trên đoạn [0;2] . maxf(x) minf(x) Bài 4: Tính gần đúng thể tích khối chóp S.ABCD biết rằng:Đáy ABCD là hình chữ nhật có các cạnh AB=8dm;AD=3dm;chân đường cao là giao điểm hai đường chéo của đáy cạnh bên SA=8dm. V Bài 5: Tính gần đúng giá trị của b nếu đường thẳng y=2x+b là tiếp tuyến của Elíp (E): . b1 b2 Bài 6: Tính gần đúng các nghiệm của phương trình: x1 x2 Bài 7: Đường tròn (C): x2+y2+px+qy+r=0 đi qua 3 điểm A(3;4), B(-5;8),C(4;3).Tính gần đúng p,q,r. p q r Bài 8:Tính gần đúng toạ độ các giao điểm M,N của đường thẳng: (d) đi qua A(4;-3),B(-5;2) và đường tròn (C): x2+y2-8x+4y=25. M( ; ) N( ; ) Bài 9: Gọi A,B là điểm cực đại, cực tiểu của đồ thị của hàm số: y= x3-2x2+x+4. a) Tính gần đúng khoảng các AB. AB b)Tính gần đúng giá trị của a và b nếu đường thẳng y=ax+b đi qua hai điểm A và B. a b Bài 10: Tìm nghiệm gần đúng(độ ,phút ,giây) của phương trình: sinxcosx+2(sinx+cosx)=1. x1 x2 Sở GD & ĐT Thanh hóa ( thời gian 150 phút ). Đề số 3: Bài 1: Tính gần đúng giá trị lớn nhất nhỏ nhất của hàm số: f(x)=sin3x +cos3x+sinxcosx. maxf(x) minf(x) Bài 2: Tính gần đúng diện tích hình tròn ngoại tiếp tam giác ABC: có các đỉnh A(1;2), B(3;-2),C(4;5). S Bài 3: Tính gần đúng các nghiệm của phương trình: . x1 x2 Bài 4: Tính gần đúng thể tích khối tứ diện ABCD có góc CBD =900, góc BCD=40015’27” và AB=AC=AD=CD=5dm. V dm3 Bài 5: Tìm nghiệm gần đúng(độ ,phút ,giây) của phương trình: 2sin2x+3sinxcosx-4cos2x=0. x1 x2 Bài 6: Tính gần đúng giá trị lớn, nhất nhỏ nhất của hàm số: f(x)=sinx –cosx-sinxcosx. maxf(x) minf(x) Bài 7: Tính gần đúng diện tích hình tròn ngoại tiếp tam giác ABC: có các đỉnh A(5;2), B(3;-4),C(4;7). S Bài 8: Tính gần đúng các nghiệm của phương trình: . x1 x2 Bài 9: Tính gần đúng diệ tích toàn phần của tứ diện ABCD có góc CBD =900,góc BCD=30025’16” và AB=AC=AD=CD=6dm. Stp dm2 Bài 10: Tìm nghiệm gần đúng(độ ,phút ,giây) của phương trình: 4cos2x+5sinxcosx-7sin2x=0. x1 x2 Sở GD & ĐT Thanh hóa ( thời gian 150 phút ). Đề số 4: Bài 1: Tìm nghiệm gần đúng(độ ,phút ,giây) của phơng trình: 4sin3x-5cos3x=6. x1 x2 Bài 2:Tính gần đúng diện tích S và đường cao AH của ABC: có AB=6dm,góc A=123031’28” và góc C=25040’26”. S AH Bài 3: Tính gần đúng giá trị lớn nhất, nhỏ nhất của hàm số: f(x)=3x -4sinx trên đoạn [0;2] . maxf(x) minf(x) Bài 4: Tính gần đúng diện tích toàn phần của hình chóp S.ABCD biết: ABCD là hình chữ nhật có các cạnh AB=8dm;AD=7dm; cạnh bên SA vuông góc với đáy, khoảng cách từ đỉnh S đến giao điểm của hai đường chéo của đáy là SO=9dm. Stp Bài 5:Tính gía trị của a,b nếu đường thẳng:y=ax+b đi qua điểm A(1;2) và là tiếp tuyến của Hypebol (H): . a1 b1 a2 b2 Bài 6: Tính góc giữa hai véc tơ: góc() Bài 7: Cho tam giác ABC: có A=500,.Tính cạnh a, R bán kính đường tròn ngoại tiếp tam giác ABC, góc B. a R B Bài 8: Trong hệ toạ độ Oxy lập phương trình đường tròn qua ba điểm: A(-1;3),B(1;5),C(-1;7). Bài 9:Tìm m để: có 4 nghiệm phân biệt. Bài 10: Giải hệ phương trình: x y z Sở GD & ĐT Thanh hóa ( thời gian 150 phút ). Đề số 5: Bài 1: Tam giác ABC nội tiếp đường tròn tâm O bán kính R=6dm, góc OAB =51036’23”,góc OAC=22018’42” và O ở trong tam giác. Tính gần đúng diện tích tam giác và độ dài cạnh BC. S BC Bài 2:Tìm gần đúng các nghiệm (độ ,phút ,giây) của phương trình: . x1 x2 Bài 3: Hình chóp S.ABCD có đáy là hình thang vuông với ABAC, ABAD,SA=SB=AB=BC=4AD.Mặt phẳng(SAB) mặt phẳng (ABCD).Tính gần đúng góc ( độ,phút,giây) giữa (SAB) & (SCD). Bài 4: Tính gần đúng giá trị lớn nhất, nhỏ nhất của hàm số: f(x)=. maxf(x) minf(x) Bài 5: Gọi M là giao điểm có cả hai toạ độ đều dương của Parabol (P): y2=5x và Hypebol (H): a)Tính gần đúng các toạ độ của điểm M. ( ; ) ( ; ) b)Tiếp tuyến của Hypebol tại M còn cắt parabol tại điểm N khác với M.Tính gần đúng các toạ độ của điểm N. ( ; ) ( ; ) Bài 6:Tính gần đúng giới hạn của dãy số có số hạng tổng quát là: limun Bài 7: Tính gần đúng giá trị lớn nhất, nhỏ nhất của hàm số: f(x)= sin3x + cos3x - sin2x. maxf(x) minf(x) Bài 8: Tìm gần đúng giá trị a,b,c khi đồ thị của hàm số đi qua các điểm A(-1;),B(2;1),C(1;). a b c Bài 9: Tính gần đúng diện tích và chu vi của đa giác đều 50 cạnh nội tiếp đường tròn bán kính 1dm D dm2 2p dm Bài 10: Tính gần đúng diện tích tứ giác ABCD với các đỉnh A(-3;4), B(2;3),C(2-5),D(-4;-3). S Sở GD & ĐT Thanh hóa ( thời gian 150 phút ).Đề số 6: Bài 1: Giải hệ (lấy kết quả 3 chữ số thập phân ). x y Bài 2: Tìm giá trị lớn nhất M, nhỏ nhất m của số có dạng: biết nó chia hết cho17,và x,y,z,t là các số nguyên có 1 chữ số. M= m= Bài 3: Tính với x= với 6 chữ số phần thập phân. B Bài 4: Một người gửi tiền tiết kiệm với lãi xuất kép ( tiền lãi sau mỗi tháng được nhập vào gốc ) với cách gửi như sau: Kỳ hạn 1 năm (1 năm tính lãi 1 lần với lãi xuất 12%/năm). Kỳ hạn 6 tháng (sau 6
File đính kèm:
- De thi giai toan bang may tinh casiofx570MS.doc