Ôn thi tốt nghiệp THPT năm học 2008 - 2009 môn Toán

doc4 trang | Chia sẻ: minhhong95 | Lượt xem: 641 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Ôn thi tốt nghiệp THPT năm học 2008 - 2009 môn Toán, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 4
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C).
Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M(; ) . .
 Câu II ( 3,0 điểm ) 
Cho hàm số . Giải phương trình 
Tính tìch phân : 
 c. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số .
Câu III ( 1,0 điểm ) 
Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , , . Tính độ dài đường sinh theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng ,
 a. Chứng minh rằng đường thẳng và đường thẳng chéo nhau .
 b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng và song song với đường 
 thẳng . 
Câu V.a ( 1,0 điểm ) : 
 Giải phương trình trên tập số phức .. 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) : 
 và mặt cầu (S) : .
 a. Tìm điểm N là hình chiếu của điểm M lên mặt phẳng (P) .
 b. Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S) .
Câu V.b ( 1,0 điểm ) : 
 Biểu diễn số phức z = + i dưới dạng lượng giác .
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ 
x
 1 
 + 0 0 + 
y
 3 
 b) 1đ Gọi (d) là tiếp tuyến cần tìm có hệ số góc k 
 (d) tiếp xúc ( C) Hệ sau có nghiệm 
 Thay (2) vào (1) ta được : 
Câu II ( 3,0 điểm ) 
 a) 1đ 
 b) 1đ 
 Phân tích Vì 
 nên 
 Do đó : = 
 Cách khác : Dùng PP đổi biến số bằng cách đặt 
 c) 1đ
 Ta có : 
 Đặt : 
 Vì . Vậy : 
Câu III ( 1,0 điểm ) 
 Gọi M là trung điểm AB . Kẻ OMAB thì OM = a 
 cân có nên đều . 
 Do đó : 
 vuông tại O và nên
 vuông tại M do đó : 
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 1đ , 
 , chéo nhau .
 b) 1đ 
Câu V.a ( 1,0 điểm ) : 
 Ta có : 
 Phưong trình có nên (*) có 2 nghiệm :
 Vậy phương trình có 3 nghiệm , 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
0,5đ Gọi 
 Khi đó : 
 b. 1,5đ + Tâm , bán kính R = 
 + (Q) // (P) nên (Q) : 
 + (S) tiếp xúc (Q) 
 Vậy mặt phẳng cần tìm có phương trình (Q) : 
Câu V.b ( 1,0 điểm ) : 
 Vậy : 

File đính kèm:

  • docde toan on tot nghiep.doc