Tuyển tập một số đề thi học sinh giỏi lớp 8 (có đáp án)
Bạn đang xem trước 20 trang mẫu tài liệu Tuyển tập một số đề thi học sinh giỏi lớp 8 (có đáp án), để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 1 Câu 1 . Tìm một số có 8 chữ số: thỏa mãn 2 điều kiện a và b sau: a) b) Câu 2 . Chứng minh rằng: ( xm + xn + 1 ) chia hết cho x2 + x + 1. khi và chỉ khi ( mn – 2) 3. Áp dụng phân tích đa thức thành nhân tử: x7 + x2 + 1. Câu 3 . Giải phương trình: x = ( 1.2 + 2.3 + 3.4 + . . . + 2006.2007). Câu 4 . Cho hình thang ABCD (đáy lớn CD). Gọi O là giao điểm của AC và BD; các đường kẻ từ A và B lần lượt song song với BC và AD cắt các đường chéo BD và AC tương ứng ở F và E. Chứng minh: EF // AB b). AB2 = EF.CD. c) Gọi S1 , S2, S3 và S4 theo thứ tự là diện tích của các tam giác OAB; OCD; OAD Và OBC Chứng minh: S1 . S2 = S3 . S4 . Câu 5 . Tìm giá trị nhỏ nhất: A = x2 - 2xy + 6y2 – 12x + 2y + 45. ĐÁP ÁN Câu 1 . Ta có a1a2a3 = (a7a8)2 (1) a4a5a6a7a8 = ( a7a8)3 (2). Từ (1) và (2) => => ( a7a8)3 = a4a5a600 + a7a8 ó ( a7a8 )3 – a7a8 = a4a5a600. ó ( a7a8 – 1) a7a8 ( a7a8 + 1) = 4 . 25 . a4a5a6 do ( a7a8 – 1) ; a7a8 ; ( a7a8 + 1) là 3 số tự nhiên liên tiếp nên có 3 khả năng: . a7a8 = 24 => a1a2a3 . . . a8 là số 57613824. . a7a8 – 1 = 24 => a7a8 = 25 => số đó là 62515625 . a7a8 = 26 => không thoả mãn câu 2 . Đặt m = 3k + r với n = 3t + s với xm + xn + 1 = x3k+r + x3t+s + 1 = x3k xr – xr + x3t xs – xs + xr + xs + 1. = xr( x3k –1) + xs ( x3t –1) + xr + xs +1 ta thấy: ( x 3k – 1) ( x2 + x + 1) và ( x3t –1 ) ( x2 + x + 1) vậy: ( xm + xn + 1) ( x2 + x + 1) ( xr + xs + 1) ( x2 + x + 1) với r = 2 và s =1 => m = 3k + 2 và n = 3t + 1 r = 1 và s = 2 m = 3k + 1 và n = 3t + 2 mn – 2 = ( 3k + 2) ( 3t + 1) – 2 = 9kt + 3k + 6t = 3( 3kt + k + 2t) mn – 2 = ( 3k + 1) ( 3t + 2) – 2 = 9kt + 6k + 3t = 3( 3kt + 2k + t) => (mn – 2) 3 Điều phải chứng minh. áp dụng: m = 7; n = 2 => mn – 2 = 12 3. ( x7 + x2 + 1) ( x2 + x + 1) ( x7 + x2 + 1) : ( x2 + x + 1) = x5 + x4 + x2 + x + 1 Câu 3 . Giải PT: Nhân 2 vế với 6 ta được: O K E H F Câu 4 .a) Do AE// BC => A B BF// AD MặT khác AB// CD ta lại có D A1B1 C nên => EF // AB b). ABCA1 và ABB1D là hình bình hành => A1C = DB1 = AB Vì EF // AB // CD nên => AB 2 = EF.CD. c) Ta có: S1 = AH.OB; S2 = CK.OD; S3 = AH.OD; S4 = OK.OD. => ; => => S1.S2 = S3.S4 Câu 5. A = x2- 2xy+ 6y2- 12x+ 2y + 45 = x2+ y2+ 36- 2xy- 12x+ 12y + 5y2- 10y+ 5+ 4 = ( x- y- 6)2 + 5( y- 1)2 + 4 Giá trị nhỏ nhất A = 4 Khi: y- 1 = 0 => y = 1 x- y- 6 = 0 x = 7 --------------------------------------------- ĐỀ 2 Câu 1: a. Rút gọn biểu thức: A= (2+1)(22+1)(24+1).......( 2256 + 1) + 1 b. Nếu x2=y2 + z2 Chứng minh rằng: (5x – 3y + 4z)( 5x –3y –4z) = (3x –5y)2 Câu 2: a. Cho (1) và (2) Tính giá trị của biểu thức A= b. Tính : B = Câu 3: Tìm x , biết : (1) Câu 4: Cho hình vuông ABCD, M Î đương chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng: a.BM ^ EF b. Các đường thẳng BM, EF, CE đồng quy. Câu 5: Cho a,b, c, là các số dương. Tìm giá trị nhỏ nhất của P= (a+ b+ c) (). ĐÁP ÁN Câu 1: a. ( 1,25 điểm) Ta có: A= (2-1) (2+1) (22+1) ........ + 1 = (22-1)(22+1) ......... (2256+1) = (24-1) (24+ 1) ......... (2256+1) ................ = [(2256)2 –1] + 1 = 2512 b, . ( 1 điểm) Ta có: (5x – 3y + 4z)( 5x –3y –4z) = (5x – 3y )2 –16z2= 25x2 –30xy + 9y2 –16 z2 (*) Vì x2=y2 + z2 Þ (*) = 25x2 –30xy + 9y2 –16 (x2 –y2) = (3x –5y)2 Câu 2: . ( 1,25 điểm) a. Từ (1) Þ bcx +acy + abz =0 Từ (2) Þ b. . ( 1,25 điểm) Từ a + b + c = 0 Þ a + b = - c Þ a2 + b2 –c2 = - 2ab Tương tự b2 + c2 – a2 = - 2bc; c2+a2-b2 = -2ac B = Câu 3: . ( 1,25 điểm) Û Þ x= 2007 A Câu 4: a. ( 1,25 điểm) Gọi K là giao điểm CB với EM; B H là giao điểm của EF và BM ÞD EMB =DBKM ( gcg) Þ Góc MFE =KMB Þ BH ^ EF E M K b. ( 1,25 điểm) D ADF = DBAE (cgc) ÞAF ^ BE H Tương tự: CE ^ BF Þ BM; AF; CE là các đường cao của DBEF Þ đpcm Câu 5: ( 1,5 điểm) Ta có: D F C P = 1 + Mặt khác với mọi x, y dương. Þ P / 3+2+2+2 =9 Vậy P min = 9 khi a=b=c. --------------------------------------- ĐỀ 3 Bài 1 (3đ): 1) Phân tích các đa thức sau thành nhân tử: a) x2 + 7x + 12 b) a10 + a5 + 1 2) Giải phương trình: Bài 2 (2đ): Tìm giá trị nguyên của x để biểu thức có giá trị nguyên Bài 3 (4đ): Cho tam giác ABC ( AB > AC ) 1) Kẻ đường cao BM; CN của tam giác. Chứng minh rằng: a) đồng dạng b) góc AMN bằng góc ABC 2) Trên cạnh AB lấy điểm K sao cho BK = AC. Gọi E là trung điểm của BC; F là trung điểm của AK. Chứng minh rằng: EF song song với tia phân giác Ax của góc BAC. Bài 4 (1đ): Tìm giá trị nhỏ nhất của biểu thức: , ( x khác 0) ĐÁP ÁN Bài 1 (3đ): 1) a) x2 + 7x + 12 = (x+3)(x+4) (1đ) b) a10 + a5 + 1 = (a10 + a9 + a8 ) - (a9 + a8 + a7 ) + (a7 + a6 + a5 ) - (a6 + a5 + a4 ) + (a5 + a4 + a3 ) - (a3 + a2 + a ) + (a2 + a + 1 ) = (a2 + a + 1 )( a8 - a7 + a5 - a4 + + a3 - a+ 1 ) (1đ) 2) (+1) + ( + 1) = ( + 1) + ( + 1) (0,5đ) ( x + 100 )( + - - ) = 0 (0,25đ) Vì: + - - 0 Do đó : x + 100 = 0 x = -100 Vậy phương trình có nghiệm: x = -100 (0,25đ) Bài 2 (2đ): P = (0,5đ) x nguyên do đó x + 2 có giá trị nguyên để P có giá trị nguyên thì phải nguyên hay 2x - 1 là ước nguyên của 5 (0,5đ) => * 2x - 1 = 1 => x = 1 * 2x - 1 = -1 => x = 0 * 2x - 1 = 5 => x = 3 * 2x - 1 = -5 => x = -2 (0,5đ) Vậy x = thì P có giá trị nguyên. Khi đó các giá trị nguyên của P là: x = 1 => P = 8 x = 0 => P = -3 x = 3 => P = 6 x = -2 => P = -1 (0,5đ) Bài 3 (4đ): 1) a) chứng minh ABM đồng dạng CAN (1đ) b) Từ câu a suy ra: AMN đồng dạng ABC AMN = ABC ( hai góc tương ứng) (1,25đ) 2) Kẻ Cy // AB cắt tia Ax tại H (0,25đ) BAH = CHA ( so le trong, AB // CH) mà CAH = BAH ( do Ax là tia phân giác) (0,5đ) Suy ra: CHA =CAH nên CAH cân tại C do đó : CH = CA => CH = BK và CH // BK (0,5đ) BK = CA Vậy tứ giác KCHB là hình bình hành suy ra: E là trung điểm KH Do F là trung điểm của AK nên EF là đường trung bình của tam giác KHA. Do đó EF // AH hay EF // Ax ( đfcm) (0,5đ) Bài 4 (1đ): A = = + = A min = khi x - 2007 = 0 hay x = 2007 (0,5đ) ------------------------------------ ĐỀ SỐ 4 Câu 1 ( 3 điểm ) . Cho biểu thức A = a, Tìm điều kiện của x để A xác định . b, Rút gọn biểu thức A . c, Tìm giá trị của x để A > O Câu 2 ( 1,5 điểm ) .Giải phơng trình sau : Câu 3 ( 3,5 điểm): Cho hình vuông ABCD. Qua A kẽ hai đờng thẳng vuông góc với nhau lần lợt cắt BC tai P và R, cắt CD tại Q và S. 1, Chứng minh AQR và APS là các tam giác cân. 2, QR cắt PS tại H; M, N là trung điểm của QR và PS . Chứng minh tứ giác AMHN là hình chữ nhật. 3, Chứng minh P là trực tâm SQR. 4, MN là trung trực của AC. 5, Chứng minh bốn điểm M, B, N, D thẳng hàng. Câu 4 ( 1 điểm): Cho biểu thức A = . Tìm giá trị nguyên của x để A nhận giá trị nguyên Câu 5 ( 1 điểm) a, Chứng minh rằng b, Cho Tính ĐÁP ÁN Câu 1 a, x 2 , x -2 , x 0 b , A = = = c, Để A > 0 thì Câu 2 . ĐKXĐ : PT x =1 ; x = 2 ; x = - 2/ 3 Cả 3 giá trị trên đều thỏa mãn ĐKXĐ . Vậy PT đã cho có tập nghiệm S = Câu 3: 1, ADQ = ABR vì chúng là hai tam giác vuông (để ý góc có cạnh vuông góc) và DA=BD ( cạnh hình vuông). Suy ra AQ=AR, nên AQR là tam giác vuông cân. Chứng minh tợng tự ta có: ARP=ADS do đó AP = AS vàAPS là tam giác cân tại A. 2, AM và AN là đờng trung tuyến của tam giác vuông cân AQR và APS nên ANSP và AMRQ. Mặt khác : = 450 nên góc MAN vuông. Vậy tứ giác AHMN có ba góc vuông, nên nó là hình chữ nhật. 3, Theo giả thiết: QARS, RCSQ nên QA và RC là hai đờng cao của SQR. Vậy P là trực tâm của SQR. 4, Trong tam giác vuông cân AQR thì MA là trung điểm nên AM =QR. Trong tam giác vuông RCQ thì CM là trung tuyến nên CM = QR. MA = MC, nghĩa là M cách đều A và C. Chứng minh tơng tự cho tam giác vuông cân ASP và tam giác vuông SCP, ta có NA= NC, nghĩa là N cách đều A và C. Hay MN là trungtrực của AC 5, Vì ABCD là hình vuông nên B và D cũng cách đều A và C. Nói cách khác, bốn điểm M, N, B, D cùng cách đều A và C nên chúng phải nằm trên đờng trung trực của AC, nghĩa là chúng thẳng hàng. Câu 4 . Ta có ĐKXĐ x -1/2 A = (x + 1) + vì x Z nên để A nguyên thì nguyên Hay 2x+1 là ớc của 2 . Vậy : 2x+1 = 2 x=1/2 ( loại ) 2x+1 = 1 x = 0 2x+1 = -1 x = -1 2x +1 = -2 x = -3/2 ( loại ) KL : Với x = 0 , x= -1 thì A nhận giá trị nguyên Câu 5. a, , Chứng minh Biến đổi vế phải đợc điều phải chứng minh. b, Ta có thì (vì nên ) Theo giả thiết khi đó ===================== ĐỀ 5 Bài 1 : (2 điểm) Cho biểu thức : M = a) Rút gọn b) Tìm giá trị bé nhất của M . Bài 2 : (2 điểm) Tìm giá trị nguyên của x để A có giá trị nguyên A = Bài 3 : 2 điểm Giải phương trình : x2 - 2005x - 2006 = 0 + + = 9 Bài 4 : (3đ) Cho hình vuông ABCD . Gọi E là 1 điểm trên cạnh BC . Qua E kẻ tia Ax vuông góc với AE . Ax cắt CD tại F . Trung tuyến AI của tam giác AEF cắt CD ở K . Đường thẳng qua E song song với AB cắt AI ở G . Chứng minh : AE = AF và tứ giác EGKF là hình thoi . AEF ~ CAF và AF2 = FK.FC Khi E thay đổi trên BC chứng minh : EK = BE + DK và chu vi tam giác EKC không đổi . Bài 5 : (1đ) Chứng minh : B = n4 - 14n3 + 71n2 -154n + 120 chia hết cho 24 ĐÁP ÁN Bài 1 : M = x4+1-x2) = Biến đổi : M = 1 - . M bé nhất khi lớn nhất x2+1 bé nhất x2 = 0 x = 0 M bé nhất = -2 Bài 2 : Biến đổi A = 4x2+9x+ 29 + A Z Î Z x-3 là ước của 4 x-3 = 1 ; 2 ; 4 x = -1; 1; 2; 4 ; 5 ; 7 Bài 3 : a) Phân tích vế trái bằng (x-2006)(x+1) = 0 (x-2006)(x+1) = 0 x1 = -1 ; x2 = 2006 Xét pt với 4 khoảng sau : x< 2 ; 2 x < 3 ; 3 x < 4 ; x 4 Rồi suy ra nghiệm của phương trình là : x = 1 ; x = 5,5 Bài 4 : a) ABE = ADF (c.g.c) AE = AF AEF vuông cân tại tại A nên AI ^ EF . IEG = IEK (g.c.g) IG = IK . Tứ giác EGFK có 2 đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc nên hình EGFK là hình thoi . b) Ta có : = ACF = 450 , góc F chung AKI ~ CAF (g.g) Tứ giác EGFK là hình thoi KE = KF = KD+ DF = KD + BE Chu vi tam giác EKC bằng KC + CE + EK = KC + CE + KD + BE = 2BC ( Không đổi) . Bài 5 : Biến đổi : B = n(n-1)(n+1)(n+2) + 8n(n-1)(n+1) -24n3+72n2-144n+120 Suy ra B 24 ================================ ĐỀ 6 Câu 1: ( 2 điểm ) Cho biểu thức: A= ( Với x ¹ 0 ; x ¹ ) 1) Rút gọn biểu thức A 2) Tính giá trị biểu thức A với x= Câu 2: ( 1 điểm ) a) Chứng minh đẳng thức: x2+y2+1 ³ x.y + x + y ( với mọi x ;y) b)Tìm giá trị lớn nhất của biểu thức sau: A = Câu 3: ( 4 điểm ) Cho hình chữ nhật ABCD . TRên đường chéo BD lấy điểm P , gọi M là điểm đối xứng của C qua P . a) Tứ giác AMDB là hình gi? b) Gọi E, F lần lượt là hình chiếu của điểm M trên AD , AB . Chứng minh: EF // AC và ba điểm E,F,P thẳng hàng. c)Chứng minh rằng tỉ số các cạnh của hình chữ nhật MEAF không phụ thuộc vào vị trí của điểm P. d) Giả sử CP ^ DB và CP = 2,4 cm,; Tính các cạnh của hình chữ nhật ABCD. Câu 4 ( 2 điểm ) Cho hai bất phương trình: 3mx-2m > x+1 (1) m-2x < 0 (2) Tìm m để hai bất phương trình trên có cùng một tập nghiệm. ĐÁP ÁN Câu 1 ( 2 điểm ) 1) ( 1 điểm ) ĐK: x ¹ 0; x ¹ ) A = = = 2) A= Câu2: ( 2 điểm ) 1) (1 điểm ) x2+y2+1 ³ x. y+x+y Û x2+y2+1 - x. y-x-y ³ 0 Û 2x2 +2y2+2-2xy-2x-2y³ 0 Û ( x2+y2-2xy) + ( x2+1-2x) +( y2+1-2y) ³ 0 Û (x-y)2 + (x-1)2+ ( y- 1)2³ 0 Bất đẳng thức luôn luôn đúng. 2) (2 điểm ) (1) Û 3mx-x>1+2m Û (3m-1)x > 1+2m. (*) + Xét 3m-1 =0 → m=1/3. (*) Û 0x> 1+ Û x . + Xét 3m -1 >0 → m> 1/3. (*) Û x> + Xét 3m-1 < 0 Û 3m <1 → m < 1/3 (*) Û x < . mà ( 2 ) Û 2x > m Û x > m/2. Hai bất phương trình có cùng tập nghiệm. Û Û m-2 =0 Û m=2. Vậy : m=2. Câu 3: (4 điểm ) a)(1 điểm ) Gọi O là giao điểm của AC và BD. → AM //PO → tứ giác AMDB là hình thang. b) ( 1 điểm ) Do AM// BD → góc OBA= góc MAE ( đồng vị ) Xét tam giác cân OAB → góc OBA= góc OAB Gọi I là giao điểm của MA và EF → D AEI cân ở I → góc IAE = góc IEA → góc FEA = góc OAB → EF //AC .(1) Mặt khác IP là đường trung bình của D MAC → IP // AC (2) Từ (1) và (2) suy ra : E,F, P thẳng hàng. c) (1 điểm ) Do D MAF ~ D DBA ( g-g) → không đổi. d) Nếu → PD= 9k; PB = 16k. Do đó CP2=PB. PD → ( 2,4)2=9.16k2 → k=0,2. PD = 9k =1,8 PB = 16 k = 3,2 DB=5 Từ đó ta chứng minh được BC2= BP. BD=16 Do đó : BC = 4 cm CD = 3 cm Câu4 ( 1 điểm ) Ta có A = Vậy Amax Û [ ( x+ min Û x+ = 0 → x = - Amax là khi x = -1/2 ======================== ĐỀ 7 Bài1( 2.5 điểm) a, Cho a + b +c = 0. Chứng minh rằng a3 +a2c – abc + b2c + b3 = 0 b, Phân tích đa thức thành nhân tử: A = bc(a+d)(b-c) –ac ( b+d) ( a-c) + ab ( c+d) ( a-b) Bài 2: ( 1,5 điểm). Cho biểu thức: y = ; ( x>0) Tìm x để biểu thức đạt giá trị lớn nhất. Tìm giá trị đó Bài 3: (2 ,5 điểm) a, Tìm tất cả các số nguyên x thoả mãn phương trình: : ( 12x – 1 ) ( 6x – 1 ) ( 4x – 1 ) ( 3x – 1 ) = 330. B, Giải bất phương trình: 3 Bài 4: ( 3 ,5 điểm) Cho góc xoy và điểm I nằm trong góc đó. Kẻ IC vuông góc với ox ; ID vuông góc với oy . Biết IC = ID = a. Đường thẳng kẻ qua I cắt õ ở A cắt oy ở b. A, Chứng minh rằng tích AC . DB không đổi khi đường thẳng qua I thay đổi. B, Chứng minh rằng C, Biết SAOB = . Tính CA ; DB theo a. ĐÁP ÁN Bài 1: 3 điểm a, Tính: Ta có: a3 + a2c – abc + b2c + b3 = (a3 + b3) + ( a2c –abc + b2c)= (a + b) ( a2 –ab =b2 ) + c( a2 - ab +b2) = ( a + b + c ) ( a2 – ab + b2 ) =0 ( Vì a+ b + c = 0 theo giả thiết) Vậy:a3 +a2c –abc + b2c + b3 = 0 ( đpCM) b, 1,5 điểm Ta có: bc(a+d) 9b –c) – ac( b +d) (a-c) + ab(c+d) ( a-b) = bc(a+d) [ (b-a) + (a-c)] – ac(a-c)(b+d) +ab(c+d)(a-b) = -bc(a+d )(a-b) +bc(a+d)(a-c) –ac(b+d)(a-c) + ab(c+d)(a-b) = b(a-b)[ a(c+d) –c(a+d)] + c(a-c)[ b(a+d) –a(b+d)] = b(a-b). d(a-c) + c(a-c) . d(b-a) = d(a-b)(a-c)(b-c) Bài 2: 2 Điểm Đặt t = Bài toán đưa về tìm x để t bé nhất Ta có t = = = = (1) Ta thấy: Theo bất đẳng thức Côsi cho 2 số dương ta có: x2 + 20042 2. 2004 .x (2) Dấu “ =” xảy ra khi x= 2004 Từ (1) và (2) suy ra: t 4 Vậy giá trị bé nhất của t = 4 khi x =2004. Vậy ymax= Khi x= 2004 Bài 3: 2 Điểm a, Nhân cả 2 vế của phương trình với 2.3.4 ta được: (12x -1)(12x -2)(12x – 3)(12x – 4) = 330.2.3.4 (12x -1)(12x -2)(12x – 3)(12x – 4) = 11.10.9.8 Vế tráI là 4 số nguyên liên tiếp khác 0 nên các thừa số phảI cùng dấu ( + )hoặc dấu ( - ). Suy ra ; (12x -1)(12x -2)(12x – 3)(12x – 4) = 11 . 10 . 9 . 8 (1) Và (12x -1)(12x -2)(12x – 3)(12x – 4) = (-11) . (-10) . (-9) .(-8) (2) Từ phương trình (1) 12x -1 = 11 x = 1 ( thoả mãn) Từ phương trình (2) 12x -1 = - 8 x= suy ra x Z. Vậy x=1 thoả mãn phương trình. b, Ta có < 3 -3 < x – 6 < 3 3< x < 9 Vậy tập nghiệm của bất phương trình là: S = { x R/ 3 < x < 9}. Bài 4 : 3 Điểm Ta có A chung ; AIC = ABI ( cặp góc đồng vị) IAC ~ BAO (gg). Suy ra: (1) Tương tự: BID ~ BAO (gg) Suy ra: (2) Từ (1) và(2) Suy ra: Hay AC. BD = IC . ID = a2 Suy ra: AC.BD = a2 không đổi. b, Nhân (1) với (2) ta có: mà IC = ID ( theo giả thiết) suy ra: C, Theo công thức tính diện tích tam giác vuông ta có; SAOB = OA.OB mà SAOB = ( giả thiết) Suy ra: OA.OB = OA . OB = Suy ra: (a + CA) ( a+DB ) = a2 + a( CA + DB ) + CA . DB = Mà CA . DB = a2 ( theo câu a) a(CA +DB) = - 2a2 CA + DB +. Vậy: Giải hệ pt CA = và DB = 3a Hoặc CA = 3a và DB = ==================== ĐỀ 8 Bài 1( 2 điểm). Cho biểu thức : 1.Rút gọn P. 2.Tìm các cặp số (x;y) Z sao cho giá trị của P = 3. Bài 2(2 điểm). Giải phương trình: Bài 3( 2 điểm). Tìm giá trị lớn nhất của biẻu thức: Bài 4 (3 điểm). Cho hình vuông ABCD có cạnh bằng a. Gọi E; F lần lượt là trung điểm của các cạnh AB, BC. M là giao điểm của CE và DF. 1.Chứng minh CE vuông góc với DF. 2.Chứng minh MAD cân. 3.Tính diện tích MDC theo a. Bài 5(1 điểm). Cho các số a; b; c thoả mãn : a + b + c = . Chứng minh rằng : a2 + b2 + c2 . ĐÁP ÁN Bài 1. (2 điểm - mỗi câu 1 điểm) MTC : 1. .Với thì giá trị biểu thức được xác định. 2. Để P =3 Các ước nguyên của 2 là : Suy ra: (loại). (loại) Vậy với (x;y) = (3;0) và (x;y) = (0;-3) thì P = 3. Bài 2.(2 điểm) Điều kiện xác định: Ta có : Phương trình đã cho tương đương với : thoả mãn điều kiện phương trình. Phương trình có nghiệm : x = 10; x = -2. Bài 3.(2điểm) M lớn nhất khi nhỏ nhất. Vì và nên nhỏ nhất khi = 0. Dấu “=” xảy ra khi x-1 = 0 . Vậy Mmax = 1 khi x = 1. Bài 4. . (3iểm) a. vuông tại C vuông tại M Hay CE DF. b.Gọi K là giao điểm của AD với CE. Ta có : AM là trung tuyến của tam giác MDK vuông tại M cân tại A c. Do đó : Mà : . 1 1 1 k e m d c f b a Vậy : . Trong theo Pitago ta có : . Do đó : Bài 5 (1điểm) Ta có: Tương tự ta cũng có: ; Cộng vế với vế các bất đẳng thức cùng chiều ta được: . Vì nên: Dấu “=” xảy ra khi a = b = c =. ========================= ĐỀ 9 Câu 1. (1,5đ) Rút gọn biểu thức : A = +++……….+ Câu 2. (1,5đ) Tìm các số a, b, c sao cho : Đa thức x4 + ax + b chia hết cho (x2 - 4) Câu 3 . (2đ) Tìm các giá trị nguyên của x để biểu thức có giá trị nguyên. Câu 4. Cho a,b,c là độ dài ba cạnh của một tam giác . Chứng minh rằng: a2 + b2 + c2 < 2 (ab + ac + bc) Câu 5 . Chứng minh rằng trong một tam giác , trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp tam giác là O. Thì H,G,O thẳng hàng. ĐÁP ÁN Câu 1. A = ( - + -+…….+ - ) = ( - ) = Câu 2. Chia đa thức x4 + ax + b cho x2 – 4 được đa thức dư suy ra a = 0 ; b = - 16. Câu 3. Î Z Û x2 –x +1 = U(7)= Đưa các phương trình về dạng tích. Đáp số x = . Câu 4. Từ giả thiết Þ a < b + c Þ a2 < ab + ac Tưng tự b2 < ab + bc c2 < ca + cb Cộng hai vế bất đẳng thức ta được (đpcm) Câu 5. trong tam giác ABC H là trực tâm, G là Trọng tâm, O là tâm đường tròn ngoại tiếp tam giác. Chỉ ra được = , = Chỉ ra =(Bằng cách vẽ BK nhận O là trung điểm chứng minh CK = AH) Þ (c.g.c) Þ H,G,O thẳng hàng. ====================== ĐỀ 11 Câu 1:Cho biểu thức: A= a, Tìm giá trị của biểu thức A xác định. b, Tìm giá trị của biểu thức A có giá trị bằng 0. c, Tìm giá trị nguyên của x để A có giá trị nguyên. Câu 2: .a, Tìm giá trị nhỏ nhất của biểu thức : A= với x>0. .b, Giải phương trình:÷ x+1÷+:÷ 2x-1÷+2x =3 Câu3 : Cho tứ giác ABCD có diện tích S. Gọi K,L,M,N lần lượt là các điểm thuộc các cạnh AB,BC,CA,AD sao cho AK/ AB = BL / BC =CM/CD =DN/DA= x. .a, Xác định vị trí các điểm K,L,M,N sao cho tứ giác MNKL có diện tích mhỏ nhất. .b, Tứ giác MNKL ở câu a là hình gì? cần thêm điều kiện gì thì tứ giác MNKL là hình chữ nhật. Câu 4: Tìm dư của phép chia đa thức x99+ x55+x11+x+ 7 cho x2-1 ĐÁP ÁN Câu1 (3đ) a.(1đ) Ta có A=(0,5đ) Vậy biểu thức A xác định khi x¹3,x¹1/3(0,5đ) b. Ta có A= do đó A=0 3x +4=0 (0,5đ) x=-4/3 thoã mãn đk(0,25đ) Vậy với x=-4/3 thì biểu thức A có giá trị bằng 0 (0,25đ) c. (1đ) Ta có A= = 1+ Để A có giá trị nguyên thì phải nguyên 3x-1 là ước của 5 3x-1¹±1,±5 =>x=-4/3;0;2/3;2 Vậy với giá trị nguyên của xlà 0 và 2 thì A có giá trị nguyên (1đ) Câu: 2: (3đ) a.(1,5đ) Ta có A==x+ +25 (0,5đ) Các số dương x và Có tích không đổi nên tổng nhỏ nhất khi và chỉ khi x = x=12 (0,5đ) Vậy Min A =49 x=12(0,5đ) b.(1,5đ) TH1: nếu xx=-3<-1(là nghiệm )(0,5đ) TH2: Nếu -1£x<1/2 thì ta có x+1-2x+1+2x=3=> x=1>1/2(loại )(0,25đ) TH3: Nếu x³1/2ta có x+1+2x-1+2x=3=> x=3/5<1/2 (loại)(0,25đ) Vậy phương trình đã cho x=-3 (0,5đ) Câu 3: (3đ) C L D M K D N B1 K1 A Gọi S1,,S2, S3, S4 lần lượt là diện tích tam giác AKN,CLM,DMN và BKL. Kẻ BB1^AD; KK1^AD ta có KK1//BB1 => KK1/BB1= AK/AB SANK/SABD= AN.KK1/AD.BB1= AN.AK/AD.AB= x(1-x)=> S1=x(1-x) SABD(0,5đ) Tương tự S2= x(1-x) SDBC=> S1,+S2= x(1-x)( SABD+ SDBC)= x(1-x)S (0,25đ) Tương tự S3+S4= x(1-x)S S1,+S2+ S3+ S4= x(1-x)2S (0,25đ) SMNKL=S-( S1,+S2+ S3+ S4)= 2S x2-2Sx+S=2S(x-1/2)2+1/2S³1/2S(0,25đ) Vậy SMNKL đạt giá trị nhỏ nhất bằng 1/2S khi x=1/2 khi đó M,N,K,L lần lượt là trung điểm các cạnh CD,DA,AB,BC (0,25đ) b.(1,5đ) tứ giác MNKL ở câu a là hình bình hành (1đ) tứ giác MNKL ở câu a là hình chữ nhật khi BD^AC (0,5đ) Câu 4: (1đ) Gọi Q(x) là thương của phép chia x99+x55+x11+x+7 cho x2-1 ta có x99+x55+x11+x+7=( x-1 )( x+1 ).Q(x)+ax+b(*) trong đó ax+b là dư của phép chia trên Với x=1 thì(*)=> 11=a+b Với x=-1 thì(*)=> 3=-a+b=> a=4,b=7 Vậy dư của phép chia x99+x55+x11+x+7 cho x2-1 là 4x+7 ========================== ĐỀ 12 Bài 1: (3đ) Cho phân thức : M = a) Tìm tập xác định của M b) Tìm các giá trị của x để M = 0 c) Rút gọn M Bài 2: (2đ) a) Tìm 3 số tự nhiên liên tiếp biết rằng nếu cộng ba tích của hai trong ba số ấy ta được 242. b) Tìm số nguyên n để giá trị của biểu thức A chia hết cho giá trị của biểu thức B. A = n3 + 2n2 - 3n + 2 ; B = n2 -n Bài 3: (2đ) a) Cho 3 số x,y,z Thoã mãn x.y.z = 1. Tính biểu thức M = b) Cho a,b,c là độ dài 3 cạnh của một tam giác Chứng minh rằng: Bài 4: (3đ) Cho tam giác ABC, ba đường phân giác AN, BM, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ với 4,7,5 a) Tính NC biết BC = 18 cm b) Tính AC biết MC - MA = 3cm c) Chứng minh ĐÁP ÁN Bài 1: a) x2+2x-8 = (x-2)(x+4) 0 x2 và x- 4 (0,5đ) TXĐ = 0,2đ b) x5 - 2x4+2x3- 4x2- 3x+ 6 = (x-2)(x2+ 3)x-1)(x+1) 1,0đ = 0 khi x=2; x= 0,2đ Để M= 0 Thì x5-2x4+ 2x3-4x2-3x+6 = 0 x2+ 2x- 8 0 0,5đ Vậy để M = 0 thì x = 0,3đ c) M = 0,3đ Bài 2: a) Gọi x-1, x, x+1 là 3 số tự nhiên liên tiếp Ta có: x(x-1) + x(x+1) + (x-1)(x+1) = 242 (0,2đ) Rút gọn được x2 = 81 0,5đ Do x là số tự nhiên nên x = 9 0,2đ Ba số tự nhiên phải tìm là 8,9,10 0,1đ b) (n3+2n2- 3n + 2):(n2-n) được thương n + 3 dư 2 0,3đ Muốn chia hết ta phải có 2n(n-1) 2n 0,2đ Ta có: n 1 -1 2 -2 n-1 0 -2 1 -6 n(n-1) 0 2 2 -3 loại loại 0,3đ Vậy n = -1; n = 2 0,2đ Bài 3: a) Vì xyz = 1 nên x 0, y0, z0 0,2đ 0,3đ 0,3đ M = 0,2đ b) a,b,c là độ dài 3 cạnh của một tam giác nên a+b-c > 0; b+c-a > 0; c+a-b > 0 0,2đ với x,y > 0 0,2đ 0,2đ 0,2đ Cộng từng vế 3 bất đẳng thức rồi chia cho 3 ta được điều phải chứng minh. Xảy ra dấu đẳng thức khi và chỉ khi a = b = c 0,2đ Bài 4: a) A B C N AN là phân giác của Nên 0,3đ Theo giả thiết ta có Nên 0,2đ 0,5đ b) BM là phân giác của nên 0,3đ Theo giả thiết ta có: 0,2đ Nên 0,5đ c) Vì AN,BM,CP là 3 đường phân giác của tam giác ABC Nên 0,5đ Do đó 0,5đ ======================== ĐỀ 13 Câu 1: ( 2,5 điểm) Phân tích đa thức thành nhân tử: a/. x2 – x – 6 (1 điểm) b/. x3 – x2 – 14x + 24 (1,5 điểm) Câu 2: ( 1 điểm) Tìm GTNN của : x2 + x + 1 Câu 3: ( 1 điểm) Chứng minh rằng: (n5 – 5n3 + 4n) 120 với m, n Z. Câu 4: ( 1,5 điểm) Cho a > b > 0 so sánh 2 số x , y với : x = ; y = Câu 5: ( 1,5 điểm) Giải phương trình: + + = 14 Câu 6: ( 2,5 điểm) Trên cạnh AB ở phía trong hình vuông ABCD dựng tam giác AFB cân , đỉnh F có góc đáy là 150 . Chứng minh tam giác CFD là tam giác đều. ĐÁP ÁN Câu 1: a/. Ta có: x2 – x – 6 = x2 – 4 – x – 2 = (x - 2)(x + 2) – (x + 2) = (x + 2)(x – 2 - 1) = (x + 2 )(x - 3) ( Nếu giải bằng cách khác cho điểm tương đương ) b/. Ta có: x = 2 là nghiệm của f(x) = x3 – x2 – 14x + 24 Do đó f(x) x – 2, ta có: f(x) : (x – 2) = x2 + x – 12 Vậy x3 – x2 – 14x + 24 = (x - 2)( x2 + x – 12) Ta lại có: x = 3 là nghiệm của x2 + x – 12 Nên x2 + x – 12 = (x - 3)(x + 4) Như vậy: x3 – x2 – 14x + 24 = (x - 2)(x - 3)(x + 4) . Câu 2: Tìm giá trị nhỏ nhất của x2 + x + 1 (1 đ’) Ta có : x2 + x + 1 = Vậy f(x) đạt GTNN khi = 0 Tức x = - Câu 3: Ta có : n5 – 5n3 + 4n = n5 – n3 – 4n3+ 4n = n3(n2 - 1) – 4n( n2 - 1) = n(n - 1)( n + 1)(n - 2)(n + 2) là tích của 5 số nguyên liên tiếp trong đó có ít nhất hai số là bội của 2 ( trong đó một số là bội của 4, một số là bội của 3, một số là bội của 5). Vậy tích của 5 số nguyên liên tiếp chia hết cho 8,3,5 = 120. Câu 4: (1,5 đ’). Ta có x,y > 0 và Vì a> b > 0 nên và . Vậy x < y. Câu 5: 1/. Xét khoảng x < -2 ,ta có: -3x + 2 = 14x = - 4. 2/. -2 x < 1, ta có : -x + 16 = 14 x = 2. (loại) 3/. 1 x < 3, ta có : x + 4 = 14 x = 10 (loại). 4/. x 3 , ta có: 3x – 2 = 14 x = Vậy phương trình trên có nghiệm là x = - 4 và x = . 2 I 2 F 2 H 150 150 2 Câu 6: ( 2,5 đ’) D C F F A B Dựng tam giác cân BIC như tam giác AFB có góc đáy 150 . Suy ra : (1) . Ta có (theo cách vẽ) nên: FB = IB (2). Từ (1) và (2) suy ra : đều . Đường thẳng CI cắt FB tại H . Ta có: = 300 ( góc ngoài của ). Suy ra: = 900 ( vì = 600 ) Tam giác đều FIB nên IH là trung trực của FB hay CH là đường trung trực của . Vậy cân tại C . Suy ra : CF = CB (3) Mặt khác : cân tại F . Do đó: FD = FC (4). Từ (3) và (4), suy ra: FD = FC = DC ( = BC). Vậy đều. GiảI bằng phương pháp khác đúng cho điểm tương đương. ============================== ĐỀ 14 Câu 1 (2 điểm): Với giá trị nào của a và b thì đa thức f(x) =x4-3x3+3x2 + ax+b chia hết cho đa thức g(x) =a2+4-3x. Câu 2 (2 điểm) Phân tích thành nhân tử. (x+y+z)3 –x3-y3-z3. Câu 3 (2 điểm ) : a-Tìm x để biểu thức sau có giá trị nhỏ nhất : x2 +x+1 b-Tìm giá tr
File đính kèm:
- TUYEN TAP MOT SO DE THI HSG LOP 8 co dap an.doc